Chaos in Bianchi I cosmology

被引:0
作者
Chen, JH [1 ]
Wang, YJ [1 ]
机构
[1] Hunan Normal Univ, Coll Phys & Informat Sci, Changsha 410081, Peoples R China
来源
CHINESE PHYSICS | 2005年 / 14卷 / 07期
关键词
chaos; Poincare section method; dynamical evolution;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have investigated the dynamical evolution of the Yang-Mills (YM) field in Bianchi I cosmology background. We find that the long-time evolution behaviour of the YM field is highly sensitive to initial conditions, i.e. small fluctuations of initial conditions for fixed Hamiltonian of the system may rapidly change the evolution of the field. By using the Poincare section method, we further illustrate that the dynamical evolution of the YM field in Bianchi I cosmology background has certain typically chaotic properties.
引用
收藏
页码:1282 / 1286
页数:5
相关论文
共 50 条
[41]   MATHEMATICS OF CHAOS [J].
Arnold, Vladimir I. .
MOSCOW MATHEMATICAL JOURNAL, 2010, 10 (02) :273-283
[42]   CHAOS ON HYPERSPACE [J].
Beran, Zdenek ;
Celikovsky, Sergej .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (05)
[43]   Semiquantum chaos [J].
Ma, J ;
Yuan, RK .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (08) :2302-2307
[44]   Topology and Chaos [J].
Garity, Dennis J. ;
Repovs, Dusan .
LET'S FACE CHAOS THROUGH NONLINEAR DYNAMICS, 2008, 1076 :63-+
[45]   QUANTUM CHAOS [J].
BLUMEL, R ;
MEHL, JB .
JOURNAL OF STATISTICAL PHYSICS, 1992, 68 (1-2) :311-319
[46]   Cryptography with chaos [J].
Baptista, MS .
PHYSICS LETTERS A, 1998, 240 (1-2) :50-54
[47]   The evasive cosmology of Ramon Llull [J].
Sidera Casas, Jordi .
ENRAHONAR-QUADERNS DE FILOSOFIA, 2016, (56) :65-83
[48]   Convergent chaos [J].
Pradas, Marc ;
Pumir, Alain ;
Huber, Greg ;
Wilkinson, Michael .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (27)
[49]   A CENTROSYMMETRIC CHAOS [J].
刘曾荣 ;
赵南 ;
谢惠民 .
Acta Mechanica Sinica, 1992, (01) :21-23
[50]   The chaos panaceas [J].
Tse, C. K. .
2005 IEEE International Conference on Industrial Technology - (ICIT), Vols 1 and 2, 2005, :6-10