Chaos in Bianchi I cosmology

被引:0
作者
Chen, JH [1 ]
Wang, YJ [1 ]
机构
[1] Hunan Normal Univ, Coll Phys & Informat Sci, Changsha 410081, Peoples R China
来源
CHINESE PHYSICS | 2005年 / 14卷 / 07期
关键词
chaos; Poincare section method; dynamical evolution;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have investigated the dynamical evolution of the Yang-Mills (YM) field in Bianchi I cosmology background. We find that the long-time evolution behaviour of the YM field is highly sensitive to initial conditions, i.e. small fluctuations of initial conditions for fixed Hamiltonian of the system may rapidly change the evolution of the field. By using the Poincare section method, we further illustrate that the dynamical evolution of the YM field in Bianchi I cosmology background has certain typically chaotic properties.
引用
收藏
页码:1282 / 1286
页数:5
相关论文
共 50 条
  • [21] WILD OSCILLATIONS IN A NONLINEAR NEURON MODEL WITH RESETS: (I) BURSTING, SPIKE-ADDING AND CHAOS
    Rubin, Jonathan E.
    Signerska-Rynkowska, Justyna
    Touboul, Jonathan D.
    Vidal, Alexandre
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (10): : 3967 - 4002
  • [22] Chaos and transient chaos in simple Hopfield neural networks
    Yang, XS
    Yuan, Q
    NEUROCOMPUTING, 2005, 69 (1-3) : 232 - 241
  • [23] On the ultimate limits of chaos-based asynchronous DS-CDMA-I: Basic definitions and results
    Rovatti, R
    Mazzini, G
    Setti, G
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2004, 51 (07) : 1336 - 1347
  • [24] From strong chaos via weak chaos to regular behaviour: Optimal interplay between chaos and order
    Hennig, D.
    Mulhern, C.
    Burbanks, A. D.
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 253 : 102 - 110
  • [25] Cryptography with chaos
    Baptista, MS
    PHYSICS LETTERS A, 1998, 240 (1-2) : 50 - 54
  • [26] Topology and Chaos
    Garity, Dennis J.
    Repovs, Dusan
    LET'S FACE CHAOS THROUGH NONLINEAR DYNAMICS, 2008, 1076 : 63 - +
  • [27] QUANTUM CHAOS
    BLUMEL, R
    MEHL, JB
    JOURNAL OF STATISTICAL PHYSICS, 1992, 68 (1-2) : 311 - 319
  • [28] Mixmaster chaos
    Motter, AE
    Letelier, PS
    PHYSICS LETTERS A, 2001, 285 (3-4) : 127 - 131
  • [29] CHAOS IN BIOMETRY
    RENSHAW, E
    IMA JOURNAL OF MATHEMATICS APPLIED IN MEDICINE AND BIOLOGY, 1994, 11 (01): : 17 - 44
  • [30] THE COMEBACK OF CHAOS
    Politi, Giorgio
    ACTA HISTRIAE, 2015, 23 (02): : 169 - 180