Quantum mechanics of bending of a nonrelativistic charged particle beam by a dipole magnet

被引:7
作者
Khan, Sameen Ahmed [1 ]
Jagannathan, Ramaswamy [2 ]
机构
[1] Dhofar Univ, Coll Arts & Appl Sci, Dept Math & Sci, CodePost Box 2509, Salalah 211, Oman
[2] Inst Math Sci, 4th Cross St,Cent Inst Technol CIT Campus, Chennai 600113, Tamil Nadu, India
来源
OPTIK | 2020年 / 206卷
关键词
Classical charged particle beam optics; Magnetic dipole; Bending magnet; Transfer map; Quantum Mechanics; Nonrelativistic Schrbdinger equation; Feshbach-Villars representation; Foldy-Wouthuysen transformation; Quantum charged particle beam optics; Quantum corrections; WOUTHUYSEN TRANSFORMATION TECHNIQUE; OPTICS;
D O I
10.1016/j.ijleo.2019.163626
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum mechanics of bending of a nonrelativistic monoenergetic charged particle beam by a dipole magnet is studied in the paraxial approximation. The transfer map for the position and momentum components of a particle of the beam between two transverse planes at different points on the curved optic axis of the system is derived starting with the nonrelativistic Schrodinger equation. It is found that the quantum transfer map contains the classical transfer map as the main part and there are tiny quantum correction terms. The negligibly small quantum corrections explain the remarkable success of classical mechanics in charged particle beam optics.
引用
收藏
页数:11
相关论文
共 46 条
[1]   The Foldy-Wouthuysen transformation technique in optics [J].
Ahmed Khan, Sameen .
OPTIK, 2006, 117 (10) :481-488
[2]  
[Anonymous], 2004, ACCELERATOR PHYS
[3]  
Arfken G., 2012, Mathematical Methods for Physicists: A Comprehensive Guide
[4]  
Berz M., 2016, INTRO BEAM PHYS
[5]  
Bjorken J.D., 1994, Relativistic Quantum Mechanics
[6]  
Chao AW., 2013, HDB ACCELERATOR PHYS
[7]  
Conte M, 1996, PART ACCEL, V56, P99
[8]  
Conte M., 2008, INTRO PHYS ACCELERAT
[9]  
Dragt A J, 1986, LECTURE NOTES PHYSIC, V250, P105, DOI [DOI 10.1007/3-540-16471, DOI 10.1007/3-540-16471-5_4]
[10]  
Dragt A. J., 2018, LIE METHODS NONLINEA