Differential evolution with mixed mutation strategy based on deep reinforcement learning
被引:49
作者:
Tan, Zhiping
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Polytech Normal Univ, Coll Elect & Informat, Guangzhou 510665, Peoples R ChinaGuangdong Polytech Normal Univ, Coll Elect & Informat, Guangzhou 510665, Peoples R China
Tan, Zhiping
[1
]
Li, Kangshun
论文数: 0引用数: 0
h-index: 0
机构:
South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Peoples R ChinaGuangdong Polytech Normal Univ, Coll Elect & Informat, Guangzhou 510665, Peoples R China
Li, Kangshun
[2
]
机构:
[1] Guangdong Polytech Normal Univ, Coll Elect & Informat, Guangzhou 510665, Peoples R China
[2] South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Peoples R China
Differential evolution;
Mixed mutation strategy;
Fitness landscape;
Deep reinforcement learning;
Deep Q-learning;
ALGORITHM;
OPTIMIZATION;
ENSEMBLE;
PARAMETERS;
OPERATOR;
DESIGN;
D O I:
10.1016/j.asoc.2021.107678
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
The performance of differential evolution (DE) algorithm significantly depends on mutation strategy. However, there are six commonly used mutation strategies in DE. It is difficult to select a reasonable mutation strategy in solving the different real-life optimization problems. In general, the selection of the most appropriate mutation strategy is based on personal experience. To address this problem, a mixed mutation strategy DE algorithm based on deep Q-network (DQN), named DEDQN is proposed in this paper, in which a deep reinforcement learning approach realizes the adaptive selection of mutation strategy in the evolution process. Two steps are needed for the application of DQN to DE. First, the DQN is trained offline through collecting the data about fitness landscape and the benefit (reward) of applying each mutation strategy during multiple runs of DEDQN tackling the training functions. Second, the mutation strategy is predicted by the trained DQN at each generation according to the fitness landscape of every test function. Besides, a historical memory parameter adaptation mechanism is also utilized to improve the DEDQN. The performance of the DEDQN algorithm is evaluated by the CEC2017 benchmark function set, and five state-of-the-art DE algorithms are compared with the DEDQN in the experiments. The experimental results indicate the competitive performance of the proposed algorithm. (C) 2021 Published by Elsevier B.V.
机构:
Imperial Coll London, Dept Comp, London, England
PROWLER Io, Cambridge, EnglandImperial Coll London, Dept Bioengn, London, England
Deisenroth, Marc Peter
;
Brundage, Miles
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Sci & Technol Dept, Human & Social Dimens, Tempe, AZ 85287 USA
Univ Oxford, Future Humanity Inst, Oxford, EnglandImperial Coll London, Dept Bioengn, London, England
机构:
Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R ChinaShenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
Cui, Laizhong
;
Li, Genghui
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
City Univ Hong Kong, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R ChinaShenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
Li, Genghui
;
Wang, Xizhao
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R ChinaShenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
Wang, Xizhao
;
Lin, Qiuzhen
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R ChinaShenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
Lin, Qiuzhen
;
Chen, Jianyong
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R ChinaShenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
Chen, Jianyong
;
Lu, Nan
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R ChinaShenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
Lu, Nan
;
Lu, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Math & Stat, Shenzhen, Peoples R ChinaShenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
机构:
Imperial Coll London, Dept Comp, London, England
PROWLER Io, Cambridge, EnglandImperial Coll London, Dept Bioengn, London, England
Deisenroth, Marc Peter
;
Brundage, Miles
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Sci & Technol Dept, Human & Social Dimens, Tempe, AZ 85287 USA
Univ Oxford, Future Humanity Inst, Oxford, EnglandImperial Coll London, Dept Bioengn, London, England
机构:
Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R ChinaShenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
Cui, Laizhong
;
Li, Genghui
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
City Univ Hong Kong, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R ChinaShenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
Li, Genghui
;
Wang, Xizhao
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R ChinaShenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
Wang, Xizhao
;
Lin, Qiuzhen
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R ChinaShenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
Lin, Qiuzhen
;
Chen, Jianyong
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R ChinaShenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
Chen, Jianyong
;
Lu, Nan
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R ChinaShenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
Lu, Nan
;
Lu, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Math & Stat, Shenzhen, Peoples R ChinaShenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China