The method of lines applied to nonlinear nonlocal functional differential equations

被引:13
作者
Dubey, Shruti A. [1 ]
机构
[1] Univ Toulouse, LAAS, CNRS, Toulouse, France
关键词
Nonlocal problem; Accretive operator; Strong solution; Method of lines; INTEGRODIFFERENTIAL EQUATIONS; INTEGRAL CONDITIONS; CAUCHY-PROBLEM; BANACH-SPACES; EXISTENCE;
D O I
10.1016/j.jmaa.2010.10.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses nonlinear functional differential equation in a real reflexive Banach space with nonlocal history condition. By using the method of lines, the existence and uniqueness of a strong solution are established. Finally, some applications of the abstract results are presented. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:275 / 281
页数:7
相关论文
共 16 条
[1]  
Bahuguna D., 1988, Applicable Analysis, V31, P149, DOI 10.1080/00036818808839821
[2]   APPLICATION OF ROTHE METHOD TO NONLINEAR INTEGRODIFFERENTIAL EQUATIONS IN HILBERT-SPACES [J].
BAHUGUNA, D ;
RAGHAVENDRA, V .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (01) :75-81
[3]  
Balachandran K, 1996, INDIAN J PURE AP MAT, V27, P443
[4]  
Barbu V, 1976, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste Romania
[5]   Existence of solutions of a semilinear functional-differential evolution nonlocal problem [J].
Byszewski, L ;
Akca, H .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (01) :65-72
[6]  
Byszewski L., 1991, J MATH ANAL APPL, V162, P497
[7]  
Byszewski L., 1991, Applicable Analysis, V40, P11
[8]  
EZZINBI K, 2007, INT J QUAL THEORY DI, V1, P135
[9]   Rothe's method for an integrodifferential equation with integral conditions [J].
Guezane-Lakoud, A. ;
Jasmati, M. S. ;
Chaoui, A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) :1522-1530
[10]   Rothe's method for a telegraph equation with integral conditions [J].
Guezane-Lakoud, A. ;
Belakroum, D. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (11) :3842-3853