On approximation by Blackman- and Rogosinski-type operators in Banach space

被引:2
作者
Kivinukk, Andi [1 ]
Saksa, Anna [1 ]
机构
[1] Tallinn Univ, Sch Digital Technol, Narva Mnt 25, EE-10120 Tallinn, Estonia
关键词
cosine operator function; Blackman; and Rogosinski-type approximation processes; modulus of continuity;
D O I
10.3176/proc.2016.3.01
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we introduce the Blackman- and Rogosinski-type approximation processes in an abstract Banach space setting. Historical roots of these processes go back to W. W. Rogosinski in 1926. The new definitions given use the concept of cosine operator functions. We proved that in the presented setting the Blackman- and Rogosinski-type operators possess the order of approximation, which coincides with results known in trigonometric approximation. Applications for the Fourier Chebyshev approximation are given as well.
引用
收藏
页码:205 / 219
页数:15
相关论文
共 50 条
  • [41] Statistical approximation for new positive linear operators of Lagrange type
    Mursaleen, M.
    Khan, Faisal
    Khan, Asif
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 548 - 558
  • [42] Approximation of Schurer type q-Bernstein-Kantorovich operators
    Mei-Ying Ren
    Xiao-Ming Zeng
    [J]. Journal of Inequalities and Applications, 2015
  • [43] Approximation Properties of Generalized Szász-Type Operators
    Kajla A.
    [J]. Acta Mathematica Vietnamica, 2018, 43 (3) : 549 - 563
  • [44] The approximation capabilities of Durrmeyer-type neural network operators
    Coroianu, Lucian
    Costarelli, Danilo
    Natale, Mariarosaria
    Pantis, Alexandra
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (05) : 4581 - 4599
  • [45] Szasz Type Operators Involving Charlier Polynomials and Approximation Properties
    Al-Abied, A. A. H.
    Mursaleen, M. Ayman
    Mursaleen, M.
    [J]. FILOMAT, 2021, 35 (15) : 5149 - 5159
  • [46] Approximation by Modified Integral Type Jakimovski-Leviatan Operators
    Atakut, Cigdem
    Buyukyazici, Ibrahim
    [J]. FILOMAT, 2016, 30 (01) : 29 - 39
  • [47] Approximation properties of Durrmeyer-variant of Lupaş type operators
    Kaur J.
    Goyal M.
    [J]. ANNALI DELL'UNIVERSITA' DI FERRARA, 2023, 69 (2) : 329 - 347
  • [48] Approximation by Kantorovich Type q-Bernstein-Stancu Operators
    Mursaleen, M.
    Ansari, Khursheed J.
    Khan, Asif
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (01) : 85 - 107
  • [49] Approximation Properties of Generalized λ-Bernstein-Kantorovich Type Operators
    Kumar, Ajay
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 505 - 520
  • [50] Approximation of Schurer type q-Bernstein-Kantorovich operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 12