On approximation by Blackman- and Rogosinski-type operators in Banach space

被引:2
作者
Kivinukk, Andi [1 ]
Saksa, Anna [1 ]
机构
[1] Tallinn Univ, Sch Digital Technol, Narva Mnt 25, EE-10120 Tallinn, Estonia
关键词
cosine operator function; Blackman; and Rogosinski-type approximation processes; modulus of continuity;
D O I
10.3176/proc.2016.3.01
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we introduce the Blackman- and Rogosinski-type approximation processes in an abstract Banach space setting. Historical roots of these processes go back to W. W. Rogosinski in 1926. The new definitions given use the concept of cosine operator functions. We proved that in the presented setting the Blackman- and Rogosinski-type operators possess the order of approximation, which coincides with results known in trigonometric approximation. Applications for the Fourier Chebyshev approximation are given as well.
引用
收藏
页码:205 / 219
页数:15
相关论文
共 50 条
  • [31] Some approximation properties of generalized integral type operators
    Kumar, Alok
    Vandana
    TBILISI MATHEMATICAL JOURNAL, 2018, 11 (01) : 99 - 116
  • [32] Approximation by generalized Baskakov–Durrmeyer–Stancu type operators
    Kumar A.S.
    Acar T.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2016, 65 (3): : 411 - 424
  • [33] Approximation by Kantorovich type q-Bernstein operators
    Dalmanoglu, Ozge
    APPLIED MATHEMATICS FOR SCIENCE AND ENGINEERING, 2007, : 113 - +
  • [34] Local Approximation Properties for certain King type Operators
    Ozarslan, Mehmet Ali
    Aktuglu, Huseyin
    FILOMAT, 2013, 27 (01) : 173 - 181
  • [35] APPROXIMATION OF GENERALIZED PALTANEA AND HEILMANN-TYPE OPERATORS
    Kumar, Sandeep
    Deo, Naokant
    MATEMATICKI VESNIK, 2022, 74 (02): : 100 - 109
  • [36] Blending-type approximation by generalized Lupa-type operators
    Goyal, Meenu
    Kajla, Arun
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2019, 25 (01): : 97 - 115
  • [37] ESTIMATES FOR APPROXIMATION NUMBERS OF SOME CLASSES OF COMPOSITION OPERATORS ON THE HARDY SPACE
    Li, Daniel
    Queffelec, Herve
    Rodriguez-Piazza, Luis
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (02) : 547 - 564
  • [38] Approximation by Jakimovski-Leviatan-Stancu-Durrmeyer Type Operators
    Mursaleen, M.
    Rahman, Shagufta
    Ansari, Khursheed J.
    FILOMAT, 2019, 33 (06) : 1517 - 1530
  • [39] Approximation by Some Baskakov–Kantorovich Exponential-Type Operators
    Firat Ozsarac
    Vijay Gupta
    Ali Aral
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 227 - 241
  • [40] Approximation of functions by genuine Srivastava-Gupta type operators
    Kumar, Ajay
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 1351 - 1362