Shallow junction doping technologies for ULSI

被引:118
作者
Jones, EC
Ishida, E
机构
[1] Kyoto Univ, Kyoto 606, Japan
[2] Adv Micro Devices Inc, Sunnyvale, CA 94088 USA
关键词
shallow junction; doping; ultra-large-scale integrated circuits; low energy implantation; metal-oxide-semiconductor field effect transistors;
D O I
10.1016/S0927-796X(98)00013-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The fabrication of thin, sub-40 nm doped layers in Si with high concentrations of electrically active dopants and box-like profiles is a major technological challenge. Making these regions without introducing residual defects in the material and without affecting the properties of other material regions in the device is even more difficult. The need to control these properties of doping profiles in ultra-large-scale integrated (ULSI) circuits has driven the study of low energy implantation, transient enhanced diffusion (TED), and focused the search for new shallow junction doping techniques. In this article, we review the motivation for shallow junctions, specific requirements for shallow junctions used in deep sub-micron dimension metal-oxide-semiconductor field effect transistors (MOSFETs), current understanding of implant and diffusion processes, and the state-of-the-art in low energy implantation and a number of alternate doping technologies, including plasma implantation, gas-immersion laser (GILD) doping, rapid vapor-phase doping (RVD), ion shower doping, and decaborane (B10H14) implantation. (C) 1998 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:1 / 80
页数:80
相关论文
共 292 条
[151]   IMPLANTATION DAMAGE AND THE ANOMALOUS TRANSIENT DIFFUSION OF ION-IMPLANTED BORON [J].
MICHEL, AE ;
RAUSCH, W ;
RONSHEIM, PA .
APPLIED PHYSICS LETTERS, 1987, 51 (07) :487-489
[153]   EXPERIMENTAL HIGH-PERFORMANCE SUB-0.1-MU-M CHANNEL NMOSFETS [J].
MII, Y ;
RISHTON, S ;
TAUR, Y ;
KERN, D ;
LII, T ;
LEE, K ;
JENKINS, KA ;
QUINLAN, D ;
BROWN, T ;
DANNER, D ;
SEWELL, F ;
POLCARI, M .
IEEE ELECTRON DEVICE LETTERS, 1994, 15 (01) :28-30
[154]   A 10-S DOPING TECHNOLOGY FOR THE APPLICATION OF LOW-TEMPERATURE POLYSILICON TFTS TO GIANT MICROELECTRONICS [J].
MIMURA, A ;
KAWACHI, G ;
AOYAMA, T ;
SUZUKI, T ;
NAGAE, Y ;
KONISHI, N ;
MOCHIZUKI, Y .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1993, 40 (03) :513-520
[155]  
MIN J, 1996, 1996 IEEE INT C PLAS, P96
[156]  
MINONDO M, 1993, P ION IMPLANTATION T, P539
[157]   NON-MASS-SEPARATED ION SHOWER DOPING OF POLYCRYSTALLINE SILICON [J].
MISHIMA, Y ;
TAKEI, M .
JOURNAL OF APPLIED PHYSICS, 1994, 75 (10) :4933-4938
[158]   NEW DOPING METHOD FOR SUBHALF MICRON TRENCH SIDEWALLS BY USING AN ELECTRON-CYCLOTRON RESONANCE PLASMA [J].
MIZUNO, B ;
NAKAYAMA, I ;
AOI, N ;
KUBOTA, M ;
KOMEDA, T .
APPLIED PHYSICS LETTERS, 1988, 53 (21) :2059-2061
[159]  
MIZUNO B, 1995, P ION IMPL TECH 1994, P985
[160]  
MIZUNO B, 1996, P 1996 IEEE S VLSI T, P66