Optimization of built-part distortion in laser powder bed fusion processing of Inconel 718

被引:6
|
作者
Chang, You-Cheng [1 ]
Tran, Hong-Chuong [2 ]
Lo, Yu-Lung [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Mech Engn, Tainan, Taiwan
[2] Southern Taiwan Univ Sci & Technol, Dept Mech Engn, Tainan, Taiwan
关键词
Laser powder bed fusion; Inherent shrinkage method; Multiscale modeling; Additive manufacturing; Parameter optimization; Cantilever beam; RESIDUAL-STRESS; MECHANICAL-PROPERTIES; PROCESS PARAMETERS; PREDICTION; MODEL;
D O I
10.1108/RPJ-12-2020-0301
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Purpose Laser powder bed fusion (LPBF) provides the means to produce unique components with almost no restriction on geometry in an extremely short time. However, the high-temperature gradient and high cooling rate produced during the fabrication process result in residual stress, which may prompt part warpage, cracks or even baseplate separation. Accordingly, an appropriate selection of the LPBF processing parameters is essential to ensure the quality of the built part. This study, thus, aims to develop an integrated simulation framework consisting of a single-track heat transfer model and a modified inherent shrinkage method model for predicting the curvature of an Inconel 718 cantilever beam produced using the LPBF process. Design/methodology/approach The simulation results for the curvature of the cantilever beam are calibrated via a comparison with the experimental observations. It is shown that the calibration factor required to drive the simulation results toward the experimental measurements has the same value for all settings of the laser power and scanning speed. Representative combinations of the laser power and scanning speed are, thus, chosen using the circle packing design method and supplied as inputs to the validated simulation framework to predict the corresponding cantilever beam curvature and density. The simulation results are then used to train artificial neural network models to predict the curvature and solid cooling rate of the cantilever beam for any combination of the laser power and scanning speed within the input design space. The resulting processing maps are screened in accordance with three quality criteria, namely, the part density, the radius of curvature and the solid cooling rate, to determine the optimal processing parameters for the LPBF process. Findings It is shown that the parameters lying within the optimal region of the processing map reduce the curvature of the cantilever beam by 17.9% and improve the density by as much as 99.97%. Originality/value The present study proposes a computational framework, which could find the parameters that not only yield the lowest distortion but also produce fully dense components in the LPBF process.
引用
收藏
页码:428 / 444
页数:17
相关论文
共 50 条
  • [1] Process Optimization of Inconel 718 Alloy Produced by Laser Powder Bed Fusion
    Hwang, Jiun-Ren
    Zheng, Jing-Yuan
    Kuo, Po-Chen
    Huang, Chou-Dian
    Fung, Chin-Ping
    METALS, 2022, 12 (09)
  • [2] Part scale estimation of residual stress development in laser powder bed fusion additive manufacturing of Inconel 718
    Promoppatum, Patcharapit
    Uthaisangsuk, Vitoon
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2021, 189
  • [3] Effects of post-processing route on fatigue performance of laser powder bed fusion Inconel 718
    Ardi, Dennise Tanoko
    Guowei, Lim
    Maharjan, Niroj
    Mutiargo, Bisma
    Leng, Seng Hwee
    Srinivasan, Raghavan
    ADDITIVE MANUFACTURING, 2020, 36
  • [4] Laser powder-bed fusion of Inconel 718 to manufacture turbine blades
    Caiazzo, Fabrizia
    Alfieri, Vittorio
    Corrado, Gaetano
    Argenio, Paolo
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 93 (9-12): : 4023 - 4031
  • [5] Laser powder bed fusion of compositionally graded CoCrMo-Inconel 718
    Wen, Yaojie
    Zhang, Baicheng
    Narayan, Ramasubramanian Lakshmi
    Wang, Pei
    Song, Xu
    Zhao, Hao
    Ramamurty, Upadrasta
    Qu, Xuanhui
    ADDITIVE MANUFACTURING, 2021, 40
  • [6] Laser shock peening as a post-processing technique for Inconel 718 components manufactured by laser powder bed fusion
    Banderas-Hernandez, J. Antonio
    Rubio-Gonzalez, Carlos
    Gomez-Ortega, Arturo
    Flores-Garcia, Santiago
    Martinez-Perez, Carlos Eli
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 132 (1-2): : 669 - 687
  • [7] Thermomechanical modelling of residual stresses and distortion in laser powder bed fusion: Assessment of the effect of build plate preheating on the behaviour of Inconel 718
    Benchabane, Boussaad Yacine
    Belkacemi, Yacine
    Belouchrani, Mohamed el Amine
    Kebir, Hocine
    OPTICS AND LASER TECHNOLOGY, 2025, 181
  • [8] Inconel 718 produced by laser powder bed fusion: an overview of the influence of processing parameters on microstructural and mechanical properties
    Marques, Ana
    Cunha, Angela
    Silva, Mariana Rodrigues
    Osendi, Maria Isabel
    Silva, Filipe Samuel
    Carvalho, Oscar
    Bartolomeu, Flavio
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 121 (9-10): : 5651 - 5675
  • [9] Creep behaviour of inconel 718 processed by laser powder bed fusion
    Xu, Zhengkai
    Hyde, C. J.
    Tuck, C.
    Clare, A. T.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2018, 256 : 13 - 24
  • [10] Influence of post-processing on very high cycle fatigue resistance of Inconel 718 obtained with laser powder bed fusion
    Yu, Chuanli
    Huang, Zhiyong
    Zhang, Zian
    Shen, Jiebin
    Wang, Jian
    Xu, Zhiping
    INTERNATIONAL JOURNAL OF FATIGUE, 2021, 153