A new framework for multi-parameter regularization

被引:13
|
作者
Gazzola, Silvia [1 ]
Reichel, Lothar [2 ]
机构
[1] Univ Padua, Dipartimento Matemat, Via Trieste 63, Padua, Italy
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
关键词
Ill-posed problems; Multi-parameter Tikhonov method; Arnoldi-Tikhonov method; Discrepancy principle; ILL-POSED PROBLEMS; TIKHONOV REGULARIZATION; L-CURVE; PARAMETER;
D O I
10.1007/s10543-015-0595-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper proposes a new approach for choosing the regularization parameters in multi-parameter regularization methods when applied to approximate the solution of linear discrete ill-posed problems. We consider both direct methods, such as Tikhonov regularization with two or more regularization terms, and iterative methods based on the projection of a Tikhonov-regularized problem onto Krylov subspaces of increasing dimension. The latter methods regularize by choosing appropriate regularization terms and the dimension of the Krylov subspace. Our investigation focuses on selecting a proper set of regularization parameters that satisfies the discrepancy principle and maximizes a suitable quantity, whose size reflects the quality of the computed approximate solution. Theoretical results are shown and illustrated by numerical experiments.
引用
收藏
页码:919 / 949
页数:31
相关论文
共 50 条
  • [31] Retrieval of Atmospheric Temperature and Moisture Vertical Profiles from Satellite Advanced Infrared Sounder Radiances with a New Regularization Parameter Selecting Method
    Zhang Kun
    Wu Chunqiang
    Li Jun
    JOURNAL OF METEOROLOGICAL RESEARCH, 2016, 30 (03) : 356 - 370
  • [32] USING GENERALIZED CROSS VALIDATION TO SELECT REGULARIZATION PARAMETER FOR TOTAL VARIATION REGULARIZATION PROBLEMS
    Wen, You-Wei
    Chan, Raymond Honfu
    INVERSE PROBLEMS AND IMAGING, 2018, 12 (05) : 1103 - 1120
  • [33] Parameter Choice Strategy That Computes Regularization Parameter before Computing the Regularized Solution
    George, Santhosh
    Padikkal, Jidesh
    Kunnarath, Ajil
    Argyros, Ioannis K.
    Regmi, Samundra
    MODELLING, 2024, 5 (02): : 530 - 548
  • [34] A new a posteriori parameter choice strategy for the convolution regularization of the space-fractional backward diffusion problem
    Shi, Cong
    Wang, Chen
    Zheng, Guanghui
    Wei, Ting
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 : 233 - 248
  • [35] Considering New Regularization Parameter-Choice Techniques for the Tikhonov Method to Improve the Accuracy of Electrocardiographic Imaging
    Chamorro-Servent, Judit
    Dubois, Remi
    Coudiere, Yves
    FRONTIERS IN PHYSIOLOGY, 2019, 10
  • [36] A linear regularization method for a nonlinear parameter identification problem
    Nair, M. Thamban
    Das Roy, Samprita
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2017, 25 (06): : 687 - 701
  • [37] A new choice rule for regularization parameters in Tikhonov regularization
    Ito, Kazufumi
    Jin, Bangti
    Zou, Jun
    APPLICABLE ANALYSIS, 2011, 90 (10) : 1521 - 1544
  • [38] Regularization parameter selection in discrete ill-posed problems - The use of the U-curve
    Krawczyk-Stando, Dorota
    Rudnicki, Marek
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2007, 17 (02) : 157 - 164
  • [39] Parameter choices for sparse regularization with the l1 norm
    Liu, Qianru
    Wang, Rui
    Xu, Yuesheng
    Yan, Mingsong
    INVERSE PROBLEMS, 2023, 39 (02)
  • [40] Parameter choice in Banach space regularization under variational inequalities
    Hofmann, Bernd
    Mathe, Peter
    INVERSE PROBLEMS, 2012, 28 (10)