Robust Prototypical Networks for Small-Intestine Polyp Recognition in Wireless Capsule Endoscopy Images

被引:0
作者
Liao, Chao [1 ]
Wang, Chengliang [1 ]
Bai, Jianying [2 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing, Peoples R China
[2] Army Med Univ, Affiliated Hosp 2, Dept Gastroenterol, Chongqing, Peoples R China
来源
THIRD INTERNATIONAL SYMPOSIUM ON IMAGE COMPUTING AND DIGITAL MEDICINE (ISICDM 2019) | 2019年
基金
中国国家自然科学基金;
关键词
Wireless capsule endoscopy; few-shot learning; polyp recognition;
D O I
10.1145/3364836.3364901
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Wireless capsule endoscopy (WCE) is a gastrointestinal examination technology, which can help find the polyps in small bowel noninvasively. The computer-aided polyp recognition systems based on deep learning require large amounts of manually annotated data, which is often unavailable for WCE images. Meanwhile, there is a serious imbalance between normal and polypoid samples in WCE image database. We proposed a few-shot learning method of automatic polyp recognition under the circumstance of absolute lack of data, named Robust Prototypical Networks (RPNs), and RPNs made adjustments to polyp position changing. Trained with an imbalanced polypoid WCE image dataset and a polypoid colon endoscopy (CE) image dataset, RPNs can extract their common features by introducing a multi-task learning scheme, separating-diffusing, to overcome imbalance problem. RPNs outperforms the previous work, and the best average AUC-PR score is 0.87.
引用
收藏
页码:319 / 323
页数:5
相关论文
共 25 条
[1]   Muscle Satellite Cells: Exploring the Basic Biology to Rule Them [J].
Almeida, Camila F. ;
Fernandes, Stephanie A. ;
Ribeiro Junior, Antonio F. ;
Okamoto, Oswaldo Keith ;
Vainzof, Mariz .
STEM CELLS INTERNATIONAL, 2016, 2016
[2]  
[Anonymous], 2015, Nature, DOI [10.1038/nature14539, DOI 10.1038/NATURE14539]
[3]  
[Anonymous], 2016, KID KOULAOUZIDIS IAK
[4]   WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians [J].
Bernal, Jorge ;
Javier Sanchez, F. ;
Fernandez-Esparrach, Gloria ;
Gil, Debora ;
Rodriguez, Cristina ;
Vilarino, Fernando .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 43 :99-111
[5]   Frontiers of robotic endoscopic capsules: a review [J].
Ciuti G. ;
Caliò R. ;
Camboni D. ;
Neri L. ;
Bianchi F. ;
Arezzo A. ;
Koulaouzidis A. ;
Schostek S. ;
Stoyanov D. ;
Oddo C.M. ;
Magnani B. ;
Menciassi A. ;
Morino M. ;
Schurr M.O. ;
Dario P. .
Journal of Micro-Bio Robotics, 2016, 11 (1-4) :1-18
[6]  
Davis JE, 2006, DEAF WAY II READER: PERSPECTIVES FROM THE SECOND INTERNATIONAL CONFERENCE ON DEAF CULTURE, P233
[7]  
Eskandari H., 2012, 2012 19th Iranian Conference of Biomedical Engineering (ICBME 2012). Proceedings, P305, DOI 10.1109/ICBME.2012.6519699
[8]   The problem of overfitting [J].
Hawkins, DM .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2004, 44 (01) :1-12
[9]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[10]   POLYP DETECTION IN WIRELESS CAPSULE ENDOSCOPY VIDEOS BASED ON IMAGE SEGMENTATION AND GEOMETRIC FEATURE [J].
Hwang, Sae ;
Celebi, M. Emre .
2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, :678-681