Eigenspectrum Calculation of the O(a)-Improved Wilson-Dirac Operator in Lattice QCD Using the Sakurai-Sugiura Method

被引:0
作者
Suno, Hiroya [1 ,2 ]
Nakamura, Yoshifumi [1 ,2 ]
Ishikawa, Ken-Ichi [3 ]
Kuramashi, Yoshinobu [1 ,2 ,4 ,5 ]
Futamura, Yasunori [6 ]
Imakura, Akira [6 ]
Sakurai, Tetsuya [6 ]
机构
[1] RIKEN, Adv Inst Computat Sci, Kobe, Hyogo 6500047, Japan
[2] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan
[3] Hiroshima Univ, Dept Phys Sci, Higashihiroshima, Hiroshima 7398526, Japan
[4] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan
[5] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan
[6] Univ Tsukuba, Dept Comp Sci, Tsukuba, Ibaraki 3058573, Japan
来源
EIGENVALUE PROBLEMS: ALGORITHMS, SOFTWARE AND APPLICATIONS IN PETASCALE COMPUTING (EPASA 2015) | 2017年 / 117卷
关键词
D O I
10.1007/978-3-319-62426-6_6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have developed a computer code to find eigenvalues and eigenvectors of non-Hermitian sparse matrices arising in lattice quantum chromodynamics (lattice QCD). The Sakurai-Sugiura (SS) method (Sakurai and Sugiura, J Comput Appl Math 159:119, 2003) is employed here, which is based on a contour integral, allowing us to obtain desired eigenvalues located inside a given contour of the complex plane. We apply the method here to calculating several low-lying eigenvalues of the non-Hermitian O(a)-improved Wilson-Dirac operator D (Sakurai et al., Comput Phys Commun 181:113, 2010). Evaluation of the low-lying eigenvalues is crucial since they determine the sign of its determinant detD, important quantity in lattice QCD. We are particularly interested in such cases as finding the lowest eigenvalues to be equal or close to zero in the complex plane. Our implementation is tested for the Wilson-Dirac operator in free case, for which the eigenvalues are analytically known. We also carry out several numerical experiments using different sets of gauge field configurations obtained in quenched approximation as well as in full QCD simulation almost at the physical point. Various lattice sizes LxLyLzLt are considered from 8(3) x 16 to 96(4), amounting to the matrix order 12L(x)L(y)L(z)L(t) from 98,304 to 1,019,215,872.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 9 条
[1]   2+1 flavor lattice QCD toward the physical point [J].
Aoki, S. ;
Ishikawa, K. -I. ;
Ishizuka, N. ;
Izubuchi, T. ;
Kadoh, D. ;
Kanaya, K. ;
Kuramashi, Y. ;
Namekawa, Y. ;
Okawa, M. ;
Taniguchi, Y. ;
Ukawa, A. ;
Ukita, N. ;
Yoshie, T. .
PHYSICAL REVIEW D, 2009, 79 (03)
[2]  
Boku T., 2012, P 30 INT S LATT FIEL, P188, DOI [10.22323/1.164.0188, DOI 10.22323/1.164.0188]
[3]   Efficient computation of low-lying eigenmodes of non-Hermitian Wilson-Dirac type matrices [J].
Neff, H .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 :1055-1057
[4]  
Ogasawara M., 2004, J SOC IND APPL MATH, V14, P193
[5]   A projection method for generalized eigenvalue problems using numerical integration [J].
Sakurai, T ;
Sugiura, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 159 (01) :119-128
[6]   Application of block Krylov subspace algorithms to the Wilson-Dirac equation with multiple right-hand sides in lattice QCD [J].
Sakurai, T. ;
Tadano, H. ;
Kuramashi, Y. .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (01) :113-117
[7]   Efficient Parameter Estimation and Implementation of a Contour Integral-Based Eigensolver [J].
Sakurai, Tetsuya ;
Futamura, Yasunori ;
Tadano, Hiroto .
JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2013, 7 (03) :249-269
[9]  
Ukita N, 2015, POS LATTICE2015, P194