SPECTRAL-SPATIAL CLUSTERING OF HYPERSPECTRAL IMAGE BASED ON LAPLACIAN REGULARIZED DEEP SUBSPACE CLUSTERING

被引:0
|
作者
Zeng, Meng [1 ]
Cai, Yaoming [1 ]
Liu, Xiaobo [2 ]
Cai, Zhihua [1 ]
Li, Xiang [1 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan, Peoples R China
[2] China Univ Geosci, Sch Automat, Wuhan, Peoples R China
来源
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019) | 2019年
基金
中国国家自然科学基金;
关键词
Laplacian regularized; Deep Subspace Clustering; 3-D Convolutional Auto-encoder; Hyperspectral Image;
D O I
10.1109/igarss.2019.8898947
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper presents a novel clustering method, named Laplacian regularized deep subspace clustering (LRDSC), for unsupervised hyperspectral image (HSI) classification. We introduce the Laplacian regularization into the subspace clustering to consider the manifold structure reflecting geometric information. To enable the subspace clustering, which works in linear space, to deal with the complicated HSI data with non-linear characteristics, we combine the subspace clustering as a self-expressive layer with deep convolutional auto-encoder. Furthermore, the 3-D convolutions and deconvolutions with skip connections are utilized to make full extraction of the spectral-spatial information and full use of the historical feature maps produced by the network. We compare the results of the proposed method with six existing cluster methods on four real hyperspectral data sets, showing that the proposed method is able to achieve state-of-the-art performance.
引用
收藏
页码:2694 / 2697
页数:4
相关论文
共 50 条
  • [31] Spectral-Spatial Discriminant Feature Learning for Hyperspectral Image Classification
    Dong, Chunhua
    Naghedolfeizi, Masoud
    Aberra, Dawit
    Zeng, Xiangyan
    REMOTE SENSING, 2019, 11 (13)
  • [32] Hierarchical Spectral-Spatial Transformer for Hyperspectral and Multispectral Image Fusion
    Zhu, Tianxing
    Liu, Qin
    Zhang, Lixiang
    REMOTE SENSING, 2024, 16 (22)
  • [33] Spectral-Spatial Linear Discriminant Analysis for Hyperspectral Image Classification
    Yuan, Haoliang
    Lu, Yang
    Yang, Lina
    Luo, Huiwu
    Tang, Yuan Yan
    2013 IEEE INTERNATIONAL CONFERENCE ON CYBERNETICS (CYBCONF), 2013,
  • [34] Multiscale spectral-spatial feature learning for hyperspectral image classification
    Sohail, Muhammad
    Chen, Zhao
    Yang, Bin
    Liu, Guohua
    DISPLAYS, 2022, 74
  • [35] Spectral Tensor Synthesis Analysis for Hyperspectral Image Spectral-Spatial Feature Extraction
    Yan, Ronghua
    Peng, Jinye
    Ma, Dongmei
    Wen, Desheng
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2019, 47 (01) : 91 - 100
  • [36] Convolution-augmented transformer network for hyperspectral image subspace clustering
    Zhongbiao Zhang
    Huajun Wang
    Shujun Liu
    Jiaxin Chen
    Zhongyu Zhang
    Sen Wang
    Earth Science Informatics, 2023, 16 : 2439 - 2453
  • [37] Convolution-augmented transformer network for hyperspectral image subspace clustering
    Zhang, Zhongbiao
    Wang, Huajun
    Liu, Shujun
    Chen, Jiaxin
    Zhang, Zhongyu
    Wang, Sen
    EARTH SCIENCE INFORMATICS, 2023, 16 (3) : 2439 - 2453
  • [38] Hyperspectral Image Tensor Feature Extraction Based on Fusion of Multiple Spectral-spatial Features
    Zhou Yawen
    Dong Guangjun
    Xue Zhixiang
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION PROCESSING (ICIIP'16), 2016,
  • [39] A Novel Spectral-Spatial Classification Method for Hyperspectral Image at Superpixel Level
    Xie, Fuding
    Lei, Cunkuan
    Jin, Cui
    An, Na
    APPLIED SCIENCES-BASEL, 2020, 10 (02):
  • [40] Hyperspectral remote sensing image destriping via spectral-spatial factorization
    Zhan, Yapeng
    Yu, Qi
    Liu, Jiying
    Wang, Zhengming
    Yang, Zexi
    SCIENTIFIC REPORTS, 2025, 15 (01):