MONOTONE AND CONSISTENT DISCRETIZATION OF THE MONGE-AMPERE OPERATOR

被引:30
|
作者
Benamou, Jean-David [1 ]
Collino, Francis [1 ]
Mirebeau, Jean-Marie [2 ]
机构
[1] INRIA, Mokaplan, Domaine Voluceau,BP 105, F-78153 Le Chesnay, France
[2] Univ Paris Saclay, CNRS, Univ Paris 11, Lab Math Orsay, F-91405 Orsay, France
关键词
Monge-Ampere PDE; monotone finite differences scheme; lattice basis reduction; Stern-Brocot tree; PARTIAL-DIFFERENTIAL-EQUATIONS; VISCOSITY SOLUTIONS; NUMERICAL-SOLUTION; REDUCTION; ALGORITHM; SCHEMES; GRIDS;
D O I
10.1090/mcom/3080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a novel discretization of the Monge-Ampere operator, simultaneously consistent and degenerate elliptic, hence accurate and robust in applications. These properties are achieved by exploiting the arithmetic structure of the discrete domain, assumed to be a two dimensional cartesian grid. The construction of our scheme is simple, but its analysis relies on original tools seldom encountered in numerical analysis, such as the geometry of two dimensional lattices and an arithmetic structure called the Stern-Brocot tree. Numerical experiments illustrate the method's efficiency.
引用
收藏
页码:2743 / 2775
页数:33
相关论文
共 50 条
  • [31] The Second Boundary Value Problem for a Discrete Monge-Ampere Equation
    Awanou, Gerard
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (01)
  • [32] WEAK SOLUTIONS OF MONGE-AMPERE TYPE EQUATIONS IN OPTIMAL TRANSPORTATION
    Jiang, Feida
    Yang, Xiaoping
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (04) : 950 - 962
  • [33] The Monge-Ampere trajectory correction for semi-Lagrangian schemes
    Cossette, Jean-Francois
    Smolarkiewicz, Piotr K.
    Charbonneau, Paul
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 274 : 208 - 229
  • [34] A LEAST-SQUARES METHOD FOR OPTIMAL TRANSPORT USING THE MONGE-AMPERE EQUATION
    Prins, C. R.
    Beltman, R.
    Boonkkamp, J. H. M. ten Thije
    Ijzerman, W. L.
    Tukker, T. W.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06) : B937 - B961
  • [35] Pointwise rates of convergence for the Oliker-Prussner method for the Monge-Ampere equation
    Nochetto, Ricardo H.
    Zhang, Wujun
    NUMERISCHE MATHEMATIK, 2019, 141 (01) : 253 - 288
  • [36] Stability and guaranteed error control of approximations to the Monge-Ampere equation
    Gallistl, Dietmar
    Tran, Ngoc Tien
    NUMERISCHE MATHEMATIK, 2024, 156 (01) : 107 - 131
  • [37] A CONVERGENT QUADRATURE-BASED METHOD FOR THE MONGE-AMPERE EQUATION
    Brusca, Jake
    Hamfeldt, Brittany Froese
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (03) : A1097 - A1124
  • [38] ON THE C2,α-REGULARITY OF THE COMPLEX MONGE-AMPERE EQUATION
    Wang, Yu
    MATHEMATICAL RESEARCH LETTERS, 2012, 19 (04) : 939 - 946
  • [39] Weak solutions to degenerate complex Monge-Ampere flows II
    Eyssidieux, Philippe
    Guedj, Vincent
    Zeriahi, Ahmed
    ADVANCES IN MATHEMATICS, 2016, 293 : 37 - 80
  • [40] FINITE ELEMENT APPROXIMATIONS OF THE THREE DIMENSIONAL MONGE-AMPERE EQUATION
    Brenner, Susanne Cecelia
    Neilan, Michael
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (05): : 979 - 1001