MONOTONE AND CONSISTENT DISCRETIZATION OF THE MONGE-AMPERE OPERATOR

被引:30
|
作者
Benamou, Jean-David [1 ]
Collino, Francis [1 ]
Mirebeau, Jean-Marie [2 ]
机构
[1] INRIA, Mokaplan, Domaine Voluceau,BP 105, F-78153 Le Chesnay, France
[2] Univ Paris Saclay, CNRS, Univ Paris 11, Lab Math Orsay, F-91405 Orsay, France
关键词
Monge-Ampere PDE; monotone finite differences scheme; lattice basis reduction; Stern-Brocot tree; PARTIAL-DIFFERENTIAL-EQUATIONS; VISCOSITY SOLUTIONS; NUMERICAL-SOLUTION; REDUCTION; ALGORITHM; SCHEMES; GRIDS;
D O I
10.1090/mcom/3080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a novel discretization of the Monge-Ampere operator, simultaneously consistent and degenerate elliptic, hence accurate and robust in applications. These properties are achieved by exploiting the arithmetic structure of the discrete domain, assumed to be a two dimensional cartesian grid. The construction of our scheme is simple, but its analysis relies on original tools seldom encountered in numerical analysis, such as the geometry of two dimensional lattices and an arithmetic structure called the Stern-Brocot tree. Numerical experiments illustrate the method's efficiency.
引用
收藏
页码:2743 / 2775
页数:33
相关论文
共 50 条
  • [1] DISCRETIZATION OF THE 3D MONGE-AMPERE OPERATOR, BETWEEN WIDE STENCILS AND POWER DIAGRAMS
    Mirebeau, Jean-Marie
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (05): : 1511 - 1523
  • [2] A Nonlinear Mean Value Property for the Monge-Ampere Operator
    Blanc, Pablo
    Charro, Fernando
    Manfredi, Juan J.
    Rossi, Julio D.
    JOURNAL OF CONVEX ANALYSIS, 2021, 28 (02) : 353 - 386
  • [3] Spline element method for Monge-Ampere equations
    Awanou, Gerard
    BIT NUMERICAL MATHEMATICS, 2015, 55 (03) : 625 - 646
  • [4] TWO NUMERICAL METHODS FOR THE ELLIPTIC MONGE-AMPERE EQUATION
    Benamou, Jean-David
    Froese, Brittany D.
    Oberman, Adam M.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (04): : 737 - 758
  • [5] Viscosity solutions to quaternionic Monge-Ampere equations
    Wan, Dongrui
    Wang, Wei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 140 : 69 - 81
  • [6] OPTIMIZATION APPROACH FOR THE MONGE-AMPERE EQUATION
    Ben Belgacem, Fethi
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (04) : 1285 - 1295
  • [7] Solving the Monge-Ampere equations for the inverse reflector problem
    Brix, Kolja
    Hafizogullari, Yasemin
    Platen, Andreas
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (05) : 803 - 837
  • [8] Fast finite difference solvers for singular solutions of the elliptic Monge-Ampere equation
    Froese, B. D.
    Oberman, A. M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (03) : 818 - 834
  • [9] MOVING MESH GENERATION USING THE PARABOLIC MONGE-AMPERE EQUATION
    Budd, C. J.
    Williams, J. F.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (05) : 3438 - 3465
  • [10] The obstacle problem for parabolic Monge-Ampere equation
    Lee, Ki-Ahm
    Lee, Taehun
    Park, Jinwan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 309 : 608 - 649