Connected Hopf algebras and iterated Ore extensions

被引:23
作者
Brown, K. A. [1 ]
O'Hagan, S. [1 ]
Zhang, J. J. [2 ]
Zhuang, G. [3 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Glasgow G12 8QW, Lanark, Scotland
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
[3] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
GELFAND-KIRILLOV DIMENSION; SKEW POLYNOMIAL-RINGS; IDENTITY;
D O I
10.1016/j.jpaa.2014.09.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate when a skew polynomial extension T = R[x; sigma, delta] of a Hopf algebra R admits a Hopf algebra structure, substantially generalising a theorem of Panov. When this construction is applied iteratively in characteristic 0 one obtains a large family of connected noetherian Hopf algebras of finite Gelfand-Kirillov dimension, including for example all enveloping algebras of finite dimensional solvable Lie algebras and all coordinate rings of unipotent groups. The properties of these Hopf algebras are investigated. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:2405 / 2433
页数:29
相关论文
共 29 条
[1]   Dualising complexes and twisted Hochschild (co)homology for noetherian Hopf algebras [J].
Brown, K. A. ;
Zhang, J. J. .
JOURNAL OF ALGEBRA, 2008, 320 (05) :1814-1850
[2]  
Brown K A, 2002, Lectures on algebraic quantum groups
[3]  
Cohn P.M., 1971, P LOND MATH SOC, V23, P193
[4]   TWISTED POLYNOMIAL-RINGS SATISFYING A POLYNOMIAL IDENTITY [J].
DAMIANO, RF ;
SHAPIRO, J .
JOURNAL OF ALGEBRA, 1985, 92 (01) :116-127
[5]  
Dixmier J., 1996, Grad. Stud. Math., V11
[6]   Noetherian Hopf algebra domains of Gelfand-Kirillov dimension two [J].
Goodearl, K. R. ;
Zhang, J. J. .
JOURNAL OF ALGEBRA, 2010, 324 (11) :3131-3168
[7]  
Goodearl K. R., 2004, An Introduction to Noncommutative Noetherian Rings
[8]   PRIME IDEALS IN SKEW POLYNOMIAL-RINGS AND QUANTIZED WEYL ALGEBRAS [J].
GOODEARL, KR .
JOURNAL OF ALGEBRA, 1992, 150 (02) :324-377
[9]   Gelfand-Kirillov dimension of skew polynomial rings of automorphism type [J].
Huh, C ;
Kim, CO .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (07) :2317-2323
[10]  
Humphreys J.E., 1975, GRAD TEXTS MATH, V21