Numerical Software to Compute Newton polytopes and Tropical Membership

被引:4
作者
Brysiewicz, Taylor [1 ]
机构
[1] Texas A&M Univ, College Stn, TX 77843 USA
关键词
Newton polytope; Hypersurface; Homotopy continuation; Tropical; Algorithm;
D O I
10.1007/s11786-020-00454-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present our implementation of an algorithm which functions as a numerical oracle for the Newton polytope of a hypersurface. Additionally, we propose an algorithm which functions as a tropical membership test for higher codimension varieties based on ideas from Hept and Theobald. This tropical membership algorithm relies on a numerical oracle and we analyze some of the convergence rates involved. Our implementation is written as a Macaulay2 package called NumericalNP.m2. To showcase this package, we investigate the Newton polytope of both a hypersurface coming from algebraic vision and the Luroth invariant.
引用
收藏
页码:577 / 589
页数:13
相关论文
共 16 条
[1]  
[Anonymous], MACAULAY2 SOFTWARE S
[2]  
Bates DJ, 2013, SOFTW ENVIRON TOOLS
[3]  
Bates Daniel J, Bertini: Software for Numerical Algebraic Geometry
[4]  
BATES DJ, 2013, BERTINI MACAULAY2
[5]  
Bernshtein David N., 1975, Funktsional'nyi Analiz i Ego Prilozheniya, V9, P1
[6]  
BIERI R, 1984, J REINE ANGEW MATH, V347, P168
[7]  
BRYSIEWICZ T, 2018, NUMERICAL COMPUTATIO
[8]  
Chan A, 2013, THESIS
[9]   AN ORACLE-BASED, OUTPUT-SENSITIVE ALGORITHM FOR PROJECTIONS OF RESULTANT POLYTOPES [J].
Emiris, Ioannis Z. ;
Fisikopoulos, Vissarion ;
Konaxis, Christos ;
Penaranda, Luis .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2013, 23 (4-5) :397-423
[10]   Newton Polytopes and Witness Sets [J].
Hauenstein J.D. ;
Sottile F. .
Mathematics in Computer Science, 2014, 8 (2) :235-251