A reciprocity map and the two-variable p-adic L-function

被引:21
|
作者
Sharifi, Romyar [1 ]
机构
[1] Univ Arizona, Tucson, AZ 85724 USA
基金
美国国家科学基金会;
关键词
SPECIAL VALUES; COMPANION FORMS; COHOMOLOGY; MODULES; TOWERS;
D O I
10.4007/annals.2011.173.1.7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For primes p >= 5, we propose a conjecture that relates the values of cup products in the Galois cohomology of the maximal unramified outside p extension of a cyclotomic field on cyclotomic p-units to the values of p-adic L-functions of cuspidal eigenforms that satisfy mod p congruences with Eisenstein series. Passing up the cyclotomic and Hida towers, we construct an isomorphism of certain spaces that allows us to compare the value of a reciprocity map on a particular norm compatible system of p-units to what is essentially the two-variable p-adic L-function of Mazur and Kitagawa.
引用
收藏
页码:251 / 300
页数:50
相关论文
共 45 条