UAV-Enabled Mobile Edge Computing with Binary Computation Offloading and Energy Constraints

被引:2
|
作者
Xu, Changyuan [1 ]
Zhan, Cheng [1 ]
Liao, Jingrui [1 ]
Zeng, Bin [1 ]
机构
[1] Southwest Univ, Sch Comp & Informat Sci, Chongqing, Peoples R China
来源
JOURNAL OF INTERNET TECHNOLOGY | 2022年 / 23卷 / 05期
基金
中国国家自然科学基金;
关键词
Unmanned aerial vehicle (UAV); mobile-edge computing (MEC); binary computation offloading; penalty successive convex approximation (P-SCA); EFFICIENT RESOURCE-ALLOCATION; RATE MAXIMIZATION; OPTIMIZATION; TASK;
D O I
10.53106/160792642022092305003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile edge computing (MEC) has been considered to provide computation services near the edge of mobile networks, while the unmanned aerial vehicle (UAV) is becoming an important integrated component to extend service coverage. In this paper, we consider a UAV-enabled MEC with binary computation offloading and energy constraints, where an energy-limited UAV is employed as an aerial edge server and each task of devices is either executing locally or offloading to the aerial edge server as a whole. To provide fairness among different ground devices, we aim to maximize the minimum computation throughput among all devices via the joint design of computing mode selection and UAV trajectory as well as resource allocation. The optimization problem is formulated as a mixed-integer non-linear problem consisting of binary variables, which is difficult to tackle. By employing deductive penalty function to penalize the effect of non-binary solution, we develop an efficient iterative algorithm to obtain a suboptimal solution via leveraging the penalty successive convex approximation (P-SCA) method and difference of two convex (D.C.) optimization framework, where the algorithm is guaranteed to converge. Extensive simulations are conducted and the results with different system parameters show that the proposed joint design algorithm can improve the computation throughput by about 40% compared to other benchmark schemes.
引用
收藏
页码:947 / 954
页数:8
相关论文
共 50 条
  • [31] Resource Allocation for a UAV-Enabled Mobile-Edge Computing System: Computation Efficiency Maximization
    Zhang, Xiang
    Zhong, Yijie
    Liu, Pengpeng
    Zhou, Fuhui
    Wang, Yuhao
    IEEE ACCESS, 2019, 7 : 113345 - 113354
  • [32] Intelligent Task Offloading and Collaborative Computation in Multi-UAV-Enabled Mobile Edge Computing
    Jingming Xia
    Peng Wang
    Bin Li
    Zesong Fei
    China Communications, 2022, 19 (04) : 244 - 256
  • [33] Intelligent task offloading and collaborative computation in multi-UAV-enabled mobile edge computing
    Xia, Jingming
    Wang, Peng
    Li, Bin
    Fei, Zesong
    CHINA COMMUNICATIONS, 2022, 19 (04) : 244 - 256
  • [34] Computation Offloading Game for an UAV Network in Mobile Edge Computing
    Messous, Mohamed-Ayoub
    Sedjelmaci, Hichem
    Houari, Noureddin
    Senouci, Sidi-Mohammed
    2017 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2017,
  • [35] Completion Time and Energy Optimization in the UAV-Enabled Mobile-Edge Computing System
    Zhan, Cheng
    Hu, Han
    Sui, Xiufeng
    Liu, Zhi
    Niyato, Dusit
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (08) : 7808 - 7822
  • [36] Computation Offloading for Mobile Edge Computing Enabled Vehicular Networks
    Wang, Jun
    Feng, Daquan
    Zhang, Shengli
    Tang, Jianhua
    Quek, Tony Q. S.
    IEEE ACCESS, 2019, 7 : 62624 - 62632
  • [37] Computation Rate Maximization in UAV-Enabled Wireless-Powered Mobile-Edge Computing Systems
    Zhou, Fuhui
    Wu, Yongpeng
    Hu, Rose Qingyang
    Qian, Yi
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2018, 36 (09) : 1927 - 1941
  • [38] Constrained Multi-Objective Optimization for UAV-Enabled Mobile Edge Computing: Offloading Optimization and Path Planning
    Peng, Chaoda
    Huang, Xumin
    Wu, Yuan
    Kang, Jiawen
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (04) : 861 - 865
  • [39] Exploring Graph Neural Networks for Joint Cruise Control and Task Offloading in UAV-enabled Mobile Edge Computing
    Li, Kai
    Ni, Wei
    Yuan, Xin
    Noor, Alam
    Jamalipour, Abbas
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [40] Intelligent reflecting surface-aided computation offloading in UAV-enabled edge networks
    Luo, Wenyu
    Cui, Huajun
    Xian, Xuefeng
    He, Xiaoming
    WIRELESS NETWORKS, 2024, 30 (05) : 3199 - 3210