Quantitative CT: technique dependence of volume estimation on pulmonary nodules

被引:31
作者
Chen, Baiyu [1 ,2 ]
Barnhart, Huiman [3 ]
Richard, Samuel [2 ,4 ]
Colsher, James [4 ]
Amurao, Maxwell [4 ]
Samei, Ehsan [1 ,2 ,4 ,5 ,6 ,7 ]
机构
[1] Duke Univ, Med Phys Grad Program, Durham, NC 27705 USA
[2] Duke Univ, Carl E Ravin Adv Imaging Labs, Durham, NC 27705 USA
[3] Duke Univ, Dept Biostat & Bioinformat, Durham, NC 27705 USA
[4] Duke Univ, Dept Radiol, Durham, NC 27705 USA
[5] Duke Univ, Dept Phys, Durham, NC 27705 USA
[6] Duke Univ, Dept Biomed Engn, Durham, NC 27705 USA
[7] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27705 USA
关键词
PHANTOM; SEGMENTATION; VARIABILITY; THICKNESS; TUMORS;
D O I
10.1088/0031-9155/57/5/1335
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Current estimation of lung nodule size typically relies on uni- or bi-dimensional techniques. While new three-dimensional volume estimation techniques using MDCT have improved size estimation of nodules with irregular shapes, the effect of acquisition and reconstruction parameters on accuracy (bias) and precision (variance) of the new techniques has not been fully investigated. To characterize the volume estimation performance dependence on these parameters, an anthropomorphic chest phantom containing synthetic nodules was scanned and reconstructed with protocols across various acquisition and reconstruction parameters. Nodule volumes were estimated by a clinical lung analysis software package, LungVCAR. Precision and accuracy of the volume assessment were calculated across the nodules and compared between protocols via a generalized estimating equation analysis. Results showed that the precision and accuracy of nodule volume quantifications were dependent on slice thickness, with different dependences for different nodule characteristics. Other parameters including kVp, pitch, and reconstruction kernel had lower impact. Determining these technique dependences enables better volume quantification via protocol optimization and highlights the importance of consistent imaging parameters in sequential examinations.
引用
收藏
页码:1335 / 1348
页数:14
相关论文
共 18 条
[1]  
[Anonymous], 1979, HDB REP RES CANC TRE
[2]   Applications of the Repeatability of Quantitative Imaging Biomarkers: A Review of Statistical Analysis of Repeat Data Sets [J].
Barnhart, Huiman X. ;
Barboriak, Daniel P. .
TRANSLATIONAL ONCOLOGY, 2009, 2 (04) :231-235
[3]   Accuracy of automated volumetry of pulmonary nodules across different multislice CT scanners [J].
Das, Marco ;
Ley-Zaporozhan, Julia ;
Gietema, H. A. ;
Czech, Andre ;
Muehlenbruch, Georg ;
Mahnken, Andreas H. ;
Katoh, Markus ;
Bakai, Annemarie ;
Salganicoff, Marcos ;
Diederich, Stefan ;
Prokop, Mathias ;
Kauczor, Hans-Ulrich ;
Guenther, Rolf W. ;
Wildberger, Joachim E. .
EUROPEAN RADIOLOGY, 2007, 17 (08) :1979-1984
[4]  
Davis C. S., 2002, STAT METHODS ANAL RE
[5]   Information-Theoretic Approach for Analyzing Bias and Variance in Lung Nodule Size Estimation With CT: A Phantom Study [J].
Gavrielides, Marios A. ;
Zeng, Rongping ;
Kinnard, Lisa M. ;
Myers, Kyle J. ;
Petrick, Nicholas .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (10) :1795-1807
[6]   Noncalcified Lung Nodules: Volumetric Assessment with Thoracic CT [J].
Gavrielides, Marios A. ;
Kinnard, Lisa M. ;
Myers, Kyle J. ;
Petrick, Nicholas .
RADIOLOGY, 2009, 251 (01) :26-37
[7]   Inherent variability of CT lung nodule measurements in vivo using semiautomated volumetric measurements [J].
Goodman, LR ;
Gulsun, M ;
Washington, L ;
Nagy, PG ;
Piacsek, KL .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2006, 186 (04) :989-994
[8]   Small pulmonary nodules: Volume measurement at chest CT - Phantom study [J].
Ko, JP ;
Rusinek, H ;
Jacobs, EL ;
Babb, JS ;
Betke, M ;
McGuinness, G ;
Naidich, DP .
RADIOLOGY, 2003, 228 (03) :864-870
[9]   Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images [J].
Kostis, WJ ;
Reeves, AP ;
Yankelevitz, DF ;
Henschke, CI .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2003, 22 (10) :1259-1274
[10]   Evaluation of 1D, 2D and 3D nodule size estimation by radiologists for spherical and non-spherical nodules through CT thoracic phantom imaging [J].
Petrick, Nicholas ;
Kim, Hyun J. Grace ;
Clunie, David ;
Borradaile, Kristin ;
Ford, Robert ;
Zeng, Rongping ;
Gavrielides, Marios A. ;
McNitt-Gray, Michael F. ;
Fenimore, Charles ;
Lu, Z. Q. John ;
Zhao, Binsheng ;
Buckler, Andrew J. .
MEDICAL IMAGING 2011: COMPUTER-AIDED DIAGNOSIS, 2011, 7963