Dynamic Cerebral Autoregulation after Cardiopulmonary Bypass

被引:6
作者
Christiansen, Claus Behrend [1 ,2 ]
Berg, Ronan M. G. [1 ,3 ]
Plovsing, Ronni [4 ,5 ]
Ronit, Andreas [6 ]
Holstein-Rathlou, Niels-Henrik [7 ]
Yndgaard, Stig [8 ]
Moller, Kirsten [9 ]
机构
[1] Rigshosp, Univ Hosp, Ctr Inflammat & Metab, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
[2] Nordsjaellands Hosp, Dept Anaesthesiol & Intens Care, Copenhagen, Denmark
[3] Rigshosp, Univ Hosp, Dept Clin Physiol Nucl Med & PET, Copenhagen, Denmark
[4] Rigshosp, Univ Hosp, Dept Intens Care 4131, Copenhagen, Denmark
[5] Koge Hosp, Dept Anaesthesiol & Intens Care, Koge, Denmark
[6] Rigshosp, Univ Hosp, Dept Infect Dis, Copenhagen, Denmark
[7] Univ Copenhagen, Renal & Vasc Res Sect, Dept Biomed Sci, Fac Hlth Sci, Copenhagen, Denmark
[8] Aarhus Univ Hosp, Ctr Heart, Aarhus, Denmark
[9] Rigshosp, Univ Hosp, Dept Neuroanaesthesia, Neurointens Care Unit 2093, Copenhagen, Denmark
关键词
cerebral autoregulation; cardiopulmonary bypass; postoperative cognitive dysfunction; POSTOPERATIVE COGNITIVE DYSFUNCTION; LIPOPOLYSACCHARIDE INFUSION; HEALTHY-VOLUNTEERS; CARDIAC-SURGERY; BLOOD-PRESSURE; RESPONSES; HUMANS;
D O I
10.1055/s-0035-1566128
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Cerebral hemodynamic disturbances in the peri-or postoperative period may contribute to postoperative cognitive dysfunction (POCD) in patients undergoing coronary artery bypass grafting (CABG) with cardiopulmonary bypass (CPB). We therefore examined dynamic cerebral autoregulation (dCA) post-CPB and changes in neurocognitive function in patients that had undergone CABG. Materials and Methods We assessed dCA by transfer function analysis of spontaneous oscillations between arterial blood pressure and middle cerebral artery blood flow velocity measured by transcranial Doppler ultrasound in eight patients 6 hours after the cessation of CPB; 10 healthy volunteers served as controls. Neurocognitive function was assessed by four specific tests 1 day prior to and 3 days after CPB. Results Even though patients exhibited systemic inflammation and anemic hypoxemia, dCA was similar to healthy volunteers (gain: 1.24 [0.94-1.49] vs. 1.22 [1.06-1.34] cm mm Hg-1 s(-1), p = 0.97; phase: 0.33 [0.15-0.56] vs. 0.69 [0.50-0.77] rad, p = 0.09). Neurocognitive testing showed a perioperative decline in the Letter Digit Coding Score (p = 0.04), while weaker dCA was associated with a lower Stroop Color Word Test (rho = -0.90; p = 0.01). Discussion and Conclusion We found no changes in dCA 6 hours after CPB. However, based on the data at hand, it cannot be ruled out that changes in dCA predispose to POCD, which calls for larger studies that assess the potential impact of dCA in the early postoperative period on POCD.
引用
收藏
页码:569 / 574
页数:6
相关论文
共 50 条
[31]   Cerebral cytokine expression after cardiac surgery with cardiopulmonary bypass [J].
Ma Qing ;
M Sokalska ;
B Voss ;
T Richter ;
J Schlegel ;
J Hess ;
R Lange ;
M-C Seghaye .
Critical Care, 7 (Suppl 1)
[32]   A prospective observational study on the effect of emboli exposure on cerebral autoregulation in cardiac surgery requiring cardiopulmonary bypass [J].
Jabur, Ghazwan N. S. ;
Merry, Alan F. ;
McGeorge, Alastair ;
Cavadino, Alana ;
Donnelly, Joseph ;
Mitchell, Simon J. .
PERFUSION-UK, 2023, 38 (05) :1045-1052
[33]   Contribution of intracranial pressure to human dynamic cerebral autoregulation after acute brain injury [J].
Brasil, Sergio ;
Nogueira, Ricardo C. ;
Salinet, Angela S. M. ;
Yoshikawa, Marcia H. ;
Teixeira, Manoel J. ;
Paiva, Wellingson ;
Malbouisson, Luiz M. S. ;
Bor-Seng-Shu, Edson ;
Panerai, Ronney B. .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2023, 324 (02) :R216-R226
[34]   Dynamic cerebral autoregulation after bed rest: effects of volume loading and exercise countermeasures [J].
Jeong, Sung-Moon ;
Hwang, Gyu-Sam ;
Kim, Seon-Ok ;
Levine, Benjamin D. ;
Zhang, Rong .
JOURNAL OF APPLIED PHYSIOLOGY, 2014, 116 (01) :24-31
[35]   Exacerbation of systemic inflammation and increased cerebral infarct volume with cardiopulmonary bypass after focal cerebral ischemia in the rat [J].
Homi, H. Mayumi ;
Jones, Wilbert L. ;
de Lange, Fellery ;
Mackensen, G. Burkhard ;
Grocott, Hilary P. .
JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2010, 140 (03) :660-U220
[36]   Impact of cardiopulmonary bypass flow on the lower limit of cerebral autoregulation during cardiac surgery: a randomized cross-over pilot study [J].
Olivier Desebbe ;
Antoine Berna ;
Alexandre Joosten ;
Darren Raphael ;
Ghislain Malapert ;
Dimitri Rolo ;
Fabio Silvio Taccone ;
Laurent Gergele .
Journal of Clinical Monitoring and Computing, 2025, 39 (3) :571-580
[37]   Original Research: Establishment of an early embolus-related cerebral injury model after cardiopulmonary bypass in miniature pigs [J].
Zhang, Weiwei ;
Weng, Guoxing ;
Li, Min ;
Yu, Shun ;
Bao, Jiayin ;
Cao, Xiying ;
Dou, Zhi ;
Wang, Huan ;
Chen, Haiyu .
EXPERIMENTAL BIOLOGY AND MEDICINE, 2016, 241 (16) :1819-1824
[38]   Transfer function analysis of dynamic cerebral autoregulation: A white paper from the International Cerebral Autoregulation Research Network [J].
Claassen, Jurgen A. H. R. ;
Meel-van den Abeelen, Aisha S. S. ;
Simpson, David M. ;
Panerai, Ronney B. .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2016, 36 (04) :665-680
[39]   Optimization of Pacing After Cardiopulmonary Bypass [J].
Chua, Jason ;
Schwarzenberger, Johanna ;
Mahajan, Aman .
JOURNAL OF CARDIOTHORACIC AND VASCULAR ANESTHESIA, 2012, 26 (02) :291-301
[40]   The impact of haemodilution and bypass pump flow on cerebral oxygen desaturation during cardiopulmonary bypass - A comparison of two systems of cardiopulmonary bypass [J].
Bennett, M. J. ;
Weatherall, M. ;
Webb, G. ;
Dudnikov, S. F. ;
Lloyd, C. T. .
PERFUSION-UK, 2015, 30 (05) :389-394