Stabilization and destabilization of nonlinear differential equations by noise

被引:144
作者
Appleby, John A. D. [1 ]
Mao, Xuerong [2 ]
Rodkina, Alexandra [3 ]
机构
[1] Dublin City Univ, Sch Math Sci, Dublin 9, Ireland
[2] Univ Strathclyde, Dept Stat & Modelling Sci, Glasgow G1 1XH, Lanark, Scotland
[3] Univ W Indies, Dept Math & Comp Sci, Kingston 7, Jamaica
关键词
almost-sure asymptotic stability; Brownian motion; destabilization; Ito's formula; stabilization;
D O I
10.1109/TAC.2008.919255
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the stabilization and destabilization by a Brownian noise perturbation that preserves the equilibrium of the ordinary differential equation x'(t) = f (x (t)). In an extension of earlier work, we lift the restriction that f obeys a global linear bound, and show that when f is locally Lipschitz, a function g can always be found so that the noise perturbation g (X (t)) dB (t) either stabilizes an unstable equilibrium, or destabilizes a stable equilibrium. When the equilibrium of the deterministic equation is nonhyperbolic, we show that a nonhyperbolic perturbation suffices to change the stability properties of the solution.
引用
收藏
页码:683 / 691
页数:9
相关论文
共 27 条
  • [1] Appleby JAD, 2006, DISCRETE CONT DYN-A, V15, P843
  • [2] Stochastic stabilisation of functional differential equations
    Appleby, JAD
    Mao, XR
    [J]. SYSTEMS & CONTROL LETTERS, 2005, 54 (11) : 1069 - 1081
  • [3] APPLEBY JAD, IN PRESS J APPL MATH
  • [4] APPLEBY JAD, IN PRESS SYSTEMS CON
  • [5] APPLEBY JAD, IN PRESS SYST CONT L
  • [6] ARNOLD L, 1983, SIAM J CONTROL OPTIM, V21, P451, DOI 10.1137/0321027
  • [7] STABILITY OF FAST PERIODIC-SYSTEMS
    BELLMAN, R
    BENTSMAN, J
    MEERKOV, SM
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (03) : 289 - 291
  • [8] Stabilisation of linear PDES, by Stratonovich noise
    Caraballo, T
    Robinson, JC
    [J]. SYSTEMS & CONTROL LETTERS, 2004, 53 (01) : 41 - 50
  • [9] Stochastic stabilization of differential systems with general decay rate
    Caraballo, T
    Garrido-Atienza, MJ
    Real, J
    [J]. SYSTEMS & CONTROL LETTERS, 2003, 48 (05) : 397 - 406
  • [10] CARABALLO T, IN PRESS P AMS