An online active set strategy to overcome the limitations of explicit MPC

被引:429
作者
Ferreau, H. J. [1 ,2 ]
Bock, H. G. [3 ]
Diehl, M. [1 ,2 ]
机构
[1] Katholieke Univ Leuven, OPTEC, B-3001 Heverlee, Belgium
[2] Katholieke Univ Leuven, Dept Elect Engn, B-3001 Heverlee, Belgium
[3] Heidelberg Univ, Interdisciplinary Ctr Sci Comput IWR, D-69120 Heidelberg, Germany
关键词
model predictive control; parametric quadratic programming; online active set strategy;
D O I
10.1002/rnc.1251
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nearly all algorithms for linear model predictive control (MPC) either rely on the solution of convex quadratic programs (QPs) in real time, or on an explicit precalculation of this solution for all possible problem instances. In this paper, we present an online active set strategy for the fast solution of parametric QPs arising in MPC. This strategy exploits solution information of the previous QP under the assumption that the active set does not change much from one QP to the next. Furthermore, we present a modification where the CPU time is limited in order to make it suitable for strict real-time applications. Its performance is demonstrated with a challenging test example comprising 240 variables and 1191 inequalities, which depends on 57 parameters and is prohibitive for explicit MPC approaches. In this example, our strategy allows CPU times of well below 100ms per QP and was about one order of magnitude faster than a standard active set QP solver. Copyright (c) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:816 / 830
页数:15
相关论文
共 24 条
  • [1] [Anonymous], 1984, P 9 IFAC WORLD C BUD
  • [2] [Anonymous], 1996, APPL MATH PARALLEL C
  • [3] QPSchur: A dual, active-set, Schur-complement method for large-scale and structured convex quadratic programming
    Bartlett, RA
    Biegler, LT
    [J]. OPTIMIZATION AND ENGINEERING, 2006, 7 (01) : 5 - 32
  • [4] The explicit linear quadratic regulator for constrained systems
    Bemporad, A
    Morari, M
    Dua, V
    Pistikopoulos, EN
    [J]. AUTOMATICA, 2002, 38 (01) : 3 - 20
  • [5] Geometric algorithm for multiparametric linear programming
    Borrelli, F
    Bemporad, A
    Morari, M
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 118 (03) : 515 - 540
  • [6] Boyd S., 2004, CONVEX OPTIMIZATION
  • [7] FERREAU HJ, 2006, P IFAC WORKSH NONL M
  • [8] Fiacco A.V., 1983, INTRO SENSITIVITY ST
  • [9] NUMERICALLY STABLE METHODS FOR QUADRATIC PROGRAMMING
    GILL, PE
    MURRAY, W
    [J]. MATHEMATICAL PROGRAMMING, 1978, 14 (03) : 349 - 372
  • [10] A WEIGHTED GRAM-SCHMIDT METHOD FOR CONVEX QUADRATIC-PROGRAMMING
    GILL, PE
    GOULD, NIM
    MURRAY, W
    SAUNDERS, MA
    WRIGHT, MH
    [J]. MATHEMATICAL PROGRAMMING, 1984, 30 (02) : 176 - 195