Hyperspectral subspace identification

被引:1008
作者
Bioucas-Dias, Jose M. [1 ,2 ]
Nascimento, Jose M. P. [1 ,3 ]
机构
[1] Univ Tecn Lisboa, Inst Super Tecn, Inst Telecomunicacoes, P-1049001 Lisbon, Portugal
[2] Univ Tecn Lisboa, Inst Super Tecn, Dept Elect & Comp Engn, P-1049001 Lisbon, Portugal
[3] Polytech Inst Lisbon, Inst Super Engn Lisboa, Dept Elect Telecommun & Comp Engn, P-1959007 Lisbon, Portugal
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2008年 / 46卷 / 08期
关键词
dimensionality reduction; hyperspectral imagery; hyperspectral signal subspace identification by minimum error (HySime); hyperspectral unmixing; linear mixture; minimum mean square error (mse); subspace identification;
D O I
10.1109/TGRS.2008.918089
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Signal subspace identification is a crucial first step in many hyperspectral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction, yielding gains in algorithm performance and complexity and in data storage. This paper introduces a new minimum mean square error-based approach to infer the signal subspace in hyperspectral imagery. The method, which is termed hyperspectral signal identification by minimum error, is eigen decomposition based, unsupervised, and fully automatic (i.e., it does not depend on any tuning parameters). It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. State-of-the-art performance of the proposed method is illustrated by using simulated and real hyperspectral images.
引用
收藏
页码:2435 / 2445
页数:11
相关论文
共 57 条
  • [11] BOARDMAN JW, 1995, P SOC PHOTO-OPT INS, V2480, P14, DOI 10.1117/12.210878
  • [12] Real time analysis of hyperspectral data sets using NRL'S ORASIS algorithm
    Bowles, J
    Antoniades, J
    Baumback, M
    Grossmann, J
    Haas, D
    Palmadesso, P
    Stracka, J
    [J]. IMAGING SPECTROMETRY III, 1997, 3118 : 38 - 45
  • [13] BOWLES J, 1995, P SOC PHOTO-OPT INS, V2553, P148, DOI 10.1117/12.221352
  • [14] Intrinsic dimensionality estimation with optimally topology preserving maps
    Bruske, J
    Sommer, G
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (05) : 572 - 575
  • [15] Constrained band selection for hyperspectral imagery
    Chang, Chein-I
    Wang, Su
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (06): : 1575 - 1585
  • [16] Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    Chang, CI
    Du, Q
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (03): : 608 - 619
  • [17] Factors affecting temporal fluctuations in damaging storm activity in the United States based on insurance loss data
    Changnon, SA
    [J]. METEOROLOGICAL APPLICATIONS, 1999, 6 (01) : 1 - 10
  • [18] Chen YC, 2005, INT GEOSCI REMOTE SE, P4311
  • [19] CLARK RS, 1993, ULTRA-WIDEBAND, SHORT-PULSE ELECTROMAGNETICS, P93
  • [20] De Backer S., 2005, IEEE GEOSCI REMOTE S, V2, P319