Hyperspectral subspace identification

被引:1008
作者
Bioucas-Dias, Jose M. [1 ,2 ]
Nascimento, Jose M. P. [1 ,3 ]
机构
[1] Univ Tecn Lisboa, Inst Super Tecn, Inst Telecomunicacoes, P-1049001 Lisbon, Portugal
[2] Univ Tecn Lisboa, Inst Super Tecn, Dept Elect & Comp Engn, P-1049001 Lisbon, Portugal
[3] Polytech Inst Lisbon, Inst Super Engn Lisboa, Dept Elect Telecommun & Comp Engn, P-1959007 Lisbon, Portugal
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2008年 / 46卷 / 08期
关键词
dimensionality reduction; hyperspectral imagery; hyperspectral signal subspace identification by minimum error (HySime); hyperspectral unmixing; linear mixture; minimum mean square error (mse); subspace identification;
D O I
10.1109/TGRS.2008.918089
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Signal subspace identification is a crucial first step in many hyperspectral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction, yielding gains in algorithm performance and complexity and in data storage. This paper introduces a new minimum mean square error-based approach to infer the signal subspace in hyperspectral imagery. The method, which is termed hyperspectral signal identification by minimum error, is eigen decomposition based, unsupervised, and fully automatic (i.e., it does not depend on any tuning parameters). It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. State-of-the-art performance of the proposed method is illustrated by using simulated and real hyperspectral images.
引用
收藏
页码:2435 / 2445
页数:11
相关论文
共 57 条
  • [1] ADAMS JB, 1986, J GEOPHYS RES-SOLID, V91, P8098, DOI 10.1029/JB091iB08p08098
  • [2] Adams JB, 1993, IMAGING SPECTROSCOPY, P145
  • [3] NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION
    AKAIKE, H
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 716 - 723
  • [4] [Anonymous], P SPIE
  • [5] [Anonymous], 1993, JPL PUBL
  • [6] [Anonymous], 1993, P 9 THEM C GEOL REM
  • [7] [Anonymous], 2001, Image and Signal Processing for Remote Sensing VII
  • [8] Improved manifold coordinate representations of large-scale hyperspectral scenes
    Bachmann, Charles M.
    Ainsworth, Thomas L.
    Fusina, Robert A.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (10): : 2786 - 2803
  • [9] An information theoretic comparison of projection pursuit and principal component features for classification of Landsat TM imagery of central Colorado
    Bachmann, CM
    Donato, TF
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2000, 21 (15) : 2927 - 2935
  • [10] Exploiting manifold geometry in hyperspectral imagery
    Bachmann, CM
    Ainsworth, TL
    Fusina, RA
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03): : 441 - 454