Topology of the three-qubit space of entanglement types

被引:13
作者
Walck, SN [1 ]
Glasbrenner, JK [1 ]
Lochman, MH [1 ]
Hilbert, SA [1 ]
机构
[1] Lebanon Valley Coll, Dept Phys, Annville, PA 17003 USA
来源
PHYSICAL REVIEW A | 2005年 / 72卷 / 05期
关键词
D O I
10.1103/PhysRevA.72.052324
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The three-qubit space of entanglement types is the orbit space of the local unitary action on the space of three-qubit pure states and, hence, describes the types of entanglement that a system of three qubits can achieve. We show that this orbit space is homeomorphic to a certain subspace of R-6, which we describe completely. We give a topologically based classification of three-qubit entanglement types, and we argue that the nontrivial topology of the three-qubit space of entanglement types forbids the existence of standard states with the convenient properties of two-qubit standard states.
引用
收藏
页数:8
相关论文
共 22 条
[1]   Generalized Schmidt decomposition and classification of three-quantum-bit states [J].
Acín, A ;
Andrianov, A ;
Costa, L ;
Jané, E ;
Latorre, JI ;
Tarrach, R .
PHYSICAL REVIEW LETTERS, 2000, 85 (07) :1560-1563
[2]   Three-qubit pure-state canonical forms [J].
Acín, A ;
Andrianov, A ;
Jané, E ;
Tarrach, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (35) :6725-6739
[3]   Geometry of the Schmidt decomposition and Hardy's theorem [J].
Aravind, PK .
AMERICAN JOURNAL OF PHYSICS, 1996, 64 (09) :1143-1150
[4]   Multipartite generalization of the Schmidt decomposition [J].
Carteret, HA ;
Higuchi, A ;
Sudbery, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (12) :7932-7939
[5]   Local symmetry properties of pure three-qubit states [J].
Carteret, HA ;
Sudbery, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (28) :4981-5002
[6]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5
[7]   Three qubits can be entangled in two inequivalent ways [J].
Dur, W. ;
Vidal, G. ;
Cirac, J.I. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06) :062314-062311
[8]   ENTANGLED QUANTUM-SYSTEMS AND THE SCHMIDT DECOMPOSITION [J].
EKERT, A ;
KNIGHT, PL .
AMERICAN JOURNAL OF PHYSICS, 1995, 63 (05) :415-423
[9]   Properties of entanglement monotones for three-qubit pure states [J].
Gingrich, RM .
PHYSICAL REVIEW A, 2002, 65 (05) :7
[10]  
Hatcher A., 2001, ALGEBRAIC TOPOLOGY