Generalized weighted Morrey spaces and classical operators

被引:46
作者
Nakamura, Shohei [1 ]
机构
[1] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo 1920397, Japan
关键词
Generalized weighted Morrey space; Hardy-Littlewood maximal operator; generalized fractional maximal operator; generalized fractional integral operator; singular integral operator; NORM INEQUALITIES; INTEGRAL-OPERATORS; MAXIMAL FUNCTIONS; HARDY;
D O I
10.1002/mana.201500260
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of generalized weighted Morrey spaces and investigate the boundedness of some operators in these spaces, such as the Hardy-Littlewood maximal operator, generalized fractional maximal operators, generalized fractional integral operators, and singular integral operators. We also study their boundedness in the vector-valued setting. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:2235 / 2262
页数:28
相关论文
共 39 条
[1]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[2]  
ANDERSEN KF, 1980, STUD MATH, V69, P19
[3]   ESTIMATES FOR OPERATOR NORMS ON WEIGHTED SPACES AND REVERSE JENSEN INEQUALITIES [J].
BUCKLEY, SM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 340 (01) :253-272
[4]  
Chiarenza F., 1987, Rend. Mat, V7, P273
[5]  
COIFMAN RR, 1974, STUD MATH, V51, P241
[6]   CHARACTERIZATIONS FOR THE GENERALIZED FRACTIONAL INTEGRAL OPERATORS ON MORREY SPACES [J].
Eridani ;
Gunawan, Hendra ;
Nakai, Eiichi ;
Sawano, Yoshihiro .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02) :761-777
[7]   THE LOCAL REGULARITY OF SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, EB ;
KENIG, CE ;
SERAPIONI, RP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (01) :77-116
[8]  
Grafakos L, 2014, GRAD TEXTS MATH, V250, DOI 10.1007/978-1-4939-1230-8
[9]  
Hakim D. I., GEN FRACTIONAL MAXIM
[10]   CERTAIN CONVOLUTION INEQUALITIES [J].
HEDBERG, LI .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 36 (02) :505-510