Non-uniform B-spline curves with multiple shape parameters

被引:8
作者
Cao, Juan [1 ]
Wang, Guo-zhao [2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
来源
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS | 2011年 / 12卷 / 10期
基金
中国国家自然科学基金;
关键词
Non-uniform B-spline; Shape parameter; Degree elevation; BEZIER CURVES; C-CURVES; SURFACES; EXTENSION; KNOT;
D O I
10.1631/jzus.C1000381
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce a kind of shape-adjustable spline curves defined over a non-uniform knot sequence. These curves not only have the many valued properties of the usual non-uniform B-spline curves, but also are shape adjustable under fixed control polygons. Our method is based on the degree elevation of B-spline curves, where maximum degrees of freedom are added to a curve parameterized in terms of a non-uniform B-spline. We also discuss the geometric effect of the adjustment of shape parameters and propose practical shape modification algorithms, which are indispensable from the user's perspective.
引用
收藏
页码:800 / 808
页数:9
相关论文
共 41 条
  • [1] [Anonymous], 1972, IMA J APPL MATH, DOI DOI 10.1093/IMAMAT/10.2.134
  • [2] UNIFIED APPROACH TO NURBS CURVE SHAPE MODIFICATION
    AU, CK
    YUEN, MMF
    [J]. COMPUTER-AIDED DESIGN, 1995, 27 (02) : 85 - 93
  • [3] BARSKY BA, 1981, THESIS U UTAH SALT L
  • [4] The structure of uniform B-spline curves with parameters
    Cao, Juan
    Wang, Guozhao
    [J]. PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2008, 18 (03) : 303 - 308
  • [5] Cao J, 2007, PROG NAT SCI-MATER, V17, P352
  • [6] A class of Bezier-like curves
    Chen, QY
    Wang, GZ
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2003, 20 (01) : 29 - 39
  • [7] DEGREE RAISING FOR SPLINES
    COHEN, E
    LYCHE, T
    SCHUMAKER, LL
    [J]. JOURNAL OF APPROXIMATION THEORY, 1986, 46 (02) : 170 - 181
  • [8] de Boor C., 1972, Journal of Approximation Theory, V6, P50, DOI 10.1016/0021-9045(72)90080-9
  • [9] The cubic trigonometric Bezier curve with two shape parameters
    Han, Xi-An
    Ma, YiChen
    Huang, XiLi
    [J]. APPLIED MATHEMATICS LETTERS, 2009, 22 (02) : 226 - 231
  • [10] Han Xuli, 2003, Journal of Computer Aided Design & Computer Graphics, V15, P576