A gauge field theory of fermionic continuous-spin particles

被引:38
作者
Bekaert, X. [1 ,2 ]
Najafizadeh, M. [1 ,3 ]
Setare, M. R. [3 ]
机构
[1] Univ Tours, Federat Rech Denis Poisson 2964, Unite Mixte Rech 7350, Lab Math & Phys Theor,CNRS, Parc Grandmont, F-37200 Tours, France
[2] Inst for Basic Sci Korea, BW Lee Ctr Fields Grav & Strings, Daejeon, South Korea
[3] Univ Kurdistan, Dept Phys, Fac Sci, Sanandaj 6617715177, Iran
基金
俄罗斯科学基金会;
关键词
Continuous spin particle; Poincare group representation; Higher spin theory; MASSLESS FIELDS; REPRESENTATIONS;
D O I
10.1016/j.physletb.2016.07.005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this letter, we suggest a local covariant action for a gauge field theory of fermionic Continuous-Spin Particles (CSPs). The action is invariant under gauge transformations without any constraint on both the gauge field and the gauge transformation parameter. The Fang-Fronsdal equations for a tower of massless fields with all half-integer spins arise as a particular limit of the equation of motion of fermionic CSPs. (C) 2016 The Authors. Published by Elsevier B.V.
引用
收藏
页码:320 / 323
页数:4
相关论文
共 17 条
[1]  
Bekaert X, 2006, J HIGH ENERGY PHYS
[2]  
Borgmann V., 1984, P NATL ACAD SCI USA, V34, P211
[3]   Continuous spin representations of the Poincare and super-Poincare groups [J].
Brink, L ;
Khan, AM ;
Ramond, P ;
Xiong, XZ .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (12) :6279-6295
[4]   MASSLESS FIELDS WITH HALF-INTEGRAL SPIN [J].
FANG, J ;
FRONSDAL, C .
PHYSICAL REVIEW D, 1978, 18 (10) :3630-3633
[5]   Minimal local Lagrangians for higher-spin geometry [J].
Francia, D ;
Sagnotti, A .
PHYSICS LETTERS B, 2005, 624 (1-2) :93-104
[6]   MASSLESS FIELDS WITH INTEGER SPIN [J].
FRONSDAL, C .
PHYSICAL REVIEW D, 1978, 18 (10) :3624-3629
[7]   Continuous spin representations from group contraction [J].
Khan, AM ;
Ramond, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
[8]   Continuous spin representations from group contraction (vol 46, art no 053515, 2005) [J].
Khan, AM ;
Ramond, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (07)
[9]   Gauge theory formulations for continuous and higher spin fields [J].
Rivelles, Victor O. .
PHYSICAL REVIEW D, 2015, 91 (12)
[10]  
Schuster P., 2013, J HIGH ENERGY PHYS, V1310