Bifurcation Diagrams and Global Phase Portraits for Some Hamiltonian Systems with Rational Potentials

被引:4
作者
Chen, Ting [1 ]
Llibre, Jaume [2 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2018年 / 28卷 / 13期
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
Rational Hamiltonian system; equilibrium point; infinity; phase portrait; bifurcation diagram; LINEAR TYPE CENTERS; INFINITY;
D O I
10.1142/S0218127418501687
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the global dynamical behavior of the Hamiltonian system <(x)over dot> = H-y(x, y), <(y)over dot> = -H-x(x, y) with the rational potential Hamiltonian H(x, y) = y(2)/2 + P(x)/Q(y), where P(x) and Q(y) are polynomials of degree 1 or 2. First we get the normal forms for these rational Hamiltonian systems by some linear change of variables. Then we classify all the global phase portraits of these systems in the Poincare disk and provide their bifurcation diagrams.
引用
收藏
页数:32
相关论文
共 17 条
[1]  
Alvarez M.J, 2011, INT J BIFURCAT CHAOS, V31, P3103
[2]   QUADRATIC HAMILTONIAN VECTOR-FIELDS [J].
ARTES, JC ;
LLIBRE, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 107 (01) :80-95
[3]   BIFURCATION AT INFINITY IN POLYNOMIAL VECTOR-FIELDS [J].
BLOWS, TR ;
ROUSSEAU, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 104 (02) :215-242
[4]   Dynamical analysis of a cubic Lienard system with global parameters [J].
Chen, Hebai ;
Chen, Xingwu .
NONLINEARITY, 2015, 28 (10) :3535-3562
[5]   Bifurcation of limit cycles at infinity in piecewise polynomial systems [J].
Chen, Ting ;
Huang, Lihong ;
Yu, Pei ;
Huang, Wentao .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 41 :82-106
[6]   Bifurcation diagrams for Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields [J].
Colak, Ilker E. ;
Llibre, Jaume ;
Valls, Claudia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (11) :5518-5533
[7]   Bifurcation diagrams for Hamiltonian linear type centers of linear plus cubic homogeneous polynomial vector fields [J].
Colak, Ilker E. ;
Llibre, Jaume ;
Valls, Claudia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (03) :846-879
[8]   Hamiltonian linear type centers of linear plus cubic homogeneous polynomial vector fields [J].
Colak, Ilker E. ;
Llibre, Jaume ;
Valls, Claudia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (05) :1623-1661
[9]  
Dumortier F, 2006, UNIVERSITEXT, P1
[10]   Phase portrait of Hamiltonian systems with homogeneous nonlinearities [J].
Gasull, A ;
Guillamon, A ;
Mañosa, V .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (04) :679-707