PPP rapid ambiguity resolution using Android GNSS raw measurements with a low-cost helical antenna

被引:13
作者
Li, Xingxing [1 ]
Wang, Hao [1 ]
Li, Xin [1 ]
Li, Linyang [1 ]
Lv, Hongbo [1 ]
Shen, Zhiheng [1 ]
Xia, Chunxi [1 ]
Gou, Hailong [1 ]
机构
[1] Wuhan Univ, Sch Geodesy & Geomat, 129 Luoyu Rd, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Android smartphone; PPP-RTK; Low-cost helical antenna; Rapid ambiguity resolution; LATTICE;
D O I
10.1007/s00190-022-01661-6
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The release of GNSS raw measurement acquisition privileges on Google Android makes high-precision positioning on the low-cost smart devices possible. However, influenced by the inner linearly polarized antenna, the pseudorange and carrier phase noises of the smart device are much larger than those of the geodetic receiver. As a result, only meter-level positioning accuracy can be obtained based on the smart device's original antenna. With the external survey-grade antenna enhancing, positioning accuracy of decimeter-level to centimeter-level can be obtained, but it still takes tens of minutes to converge and fix the ambiguity. However, a PPP-RTK method is proposed to achieve rapid integer ambiguity resolution (AR) with the regional atmospheric augmentation. In this contribution, an uncombined PPP-RTK model is developed using Android GNSS raw measurements with an external antenna, after carefully considering the coexistence of single- and dual-frequency signals on smart devices. A low-cost helical antenna is employed to enhance the Android GNSS data as it is capable to provide observation data of comparable quality with the survey-grade antenna and has several advantages of low weight, low-power consumption, and portability. Moreover, a series of quality control methods in the data preprocessing and ambiguity resolution are proposed for smartphone-based PPP-RTK to enhance the positioning results. To validate the proposed method, several experiments are carried out using raw measurements of Xiaomi Mi8 with an external low-cost helical antenna. The result shows that the ambiguity fixed solution can be obtained within 3 min in both static and kinematic scenarios. After the ambiguity resolution, centimeter-level positioning accuracy of (1.7, 2.1, 4.1) cm and (7.2, 4.5, 8.1) cm for the east, north, and up components can be achieved in static and kinematic scenarios, respectively.
引用
收藏
页数:14
相关论文
empty
未找到相关数据