Hybrid Silicon Nanocone-Polymer Solar Cells

被引:386
作者
Jeong, Sangmoo [2 ]
Garnett, Erik C. [1 ]
Wang, Shuang [2 ]
Yu, Zongu [2 ]
Fan, Shanhui [2 ]
Brongersma, Mark L. [1 ]
McGehee, Michael D. [1 ]
Cui, Yi [1 ,3 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
关键词
Nanotexture; solar cell; heterojunction; conductive polymer; light trapping; NANOWIRE; ABSORPTION; ARRAYS;
D O I
10.1021/nl300713x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 mu m thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm(2), which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution.
引用
收藏
页码:2971 / 2976
页数:6
相关论文
共 50 条
[21]   Optical absorption enhancement in slanted silicon nanocone hole arrays for solar photovoltaics [J].
Zhang, Shu-Yuan ;
Liu, Wen ;
Li, Zhao-Feng ;
Liu, Min ;
Liu, Yu-Sheng ;
Wang, Xiao-Dong ;
Yang, Fu-Hua .
CHINESE PHYSICS B, 2016, 25 (10)
[22]   Preparation and characteristics of hybrid ZnO-polymer solar cells [J].
L. W. Ji ;
W. S. Shih ;
T. H. Fang ;
C. Z. Wu ;
S. M. Peng ;
T. H. Meen .
Journal of Materials Science, 2010, 45 :3266-3269
[23]   Exploring polymer/nanoparticle hybrid solar cells in tandem architecture [J].
Kaltenhauser, Verena ;
Rath, Thomas ;
Edler, Michael ;
Reichmann, Angelika ;
Trimmel, Gregor .
RSC ADVANCES, 2013, 3 (40) :18643-18650
[24]   Development of Organic Polymer/Inorganic Semiconductor Hybrid Solar Cells [J].
Zhang Huijing ;
Hou Xin .
PROGRESS IN CHEMISTRY, 2012, 24 (11) :2106-2115
[25]   Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes [J].
Kalita, Golap ;
Adhikari, Sudip ;
Aryal, Hare Ram ;
Afre, Rakesh ;
Soga, Tetsuo ;
Sharon, Maheshwar ;
Koichi, Wakita ;
Umeno, Masayoshi .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (11)
[26]   Silicon nanocone formation via low-energy helium ion sputtering [J].
Novakowski, Theodore J. ;
Tripathi, Jitendra K. ;
Hassanein, Ahmed .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2018, 36 (05)
[27]   Light Trapping in Thin Film Silicon Solar Cells: An Assessment [J].
Zhao, Hui ;
Schiff, E. A. ;
Sivec, L. ;
Yang, J. ;
Guha, S. .
THIN FILM SOLAR TECHNOLOGY III, 2011, 8110
[28]   Innovative Strategies for Photons Management on Ultrathin Silicon Solar Cells [J].
Li, Ning ;
Fratalocchi, Andrea .
GLOBAL CHALLENGES, 2024, 8 (03)
[29]   17.6%-Efficient radial junction solar cells using silicon nano/micro hybrid structures [J].
Lee, Kangmin ;
Hwang, Inchan ;
Kim, Namwoo ;
Choi, Deokjae ;
Um, Han-Don ;
Kim, Seungchul ;
Seo, Kwanyong .
NANOSCALE, 2016, 8 (30) :14473-14479
[30]   Improved photovoltaic performance of silicon nanowire/organic hybrid solar cells by incorporating silver nanoparticles [J].
Liu, Kong ;
Qu, Shengchun ;
Zhang, Xinhui ;
Tan, Furui ;
Wang, Zhanguo .
NANOSCALE RESEARCH LETTERS, 2013, 8