Modeling and Classification of sEMG Based on Blind Identification Theory

被引:0
|
作者
Li, Yang [1 ]
Tian, Yantao [1 ]
Shang, Xiaojing [1 ]
Chen, Wanzhong [1 ]
机构
[1] Jilin Univ, Sch Commun Engn, Changchun 130025, Peoples R China
来源
ADVANCES IN NEURAL NETWORKS - ISNN 2011, PT III | 2011年 / 6677卷
关键词
sEMG; Blind Identification; Hammerstein-Wiener Model;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Surface electromyography signal is non-stationary, susceptible to external interference. For this situation under this case, cyclostationary input with the inverse nonlinear mapping of the Hammerstein-Wiener model were combined to build surface electromyography model and to realize the blind discrete nonlinear system identification. The parameters of model were used as input of improved BP neural network. The experiments results demonstrated the effectiveness of this approach.
引用
收藏
页码:340 / 347
页数:8
相关论文
共 50 条
  • [41] Identification of Low Level sEMG Signals for Individual Finger Prosthesis
    Villarejo, John J.
    Costa, Regina M.
    Bastos, Teodiano
    Frizera, Anselmo
    5TH ISSNIP-IEEE BIOSIGNALS AND BIOROBOTICS CONFERENCE (2014): BIOSIGNALS AND ROBOTICS FOR BETTER AND SAFER LIVING, 2014, : 178 - 183
  • [42] sEMG Signal Classification Using SMO Algorithm and Singular Value Decomposition
    Ruangpaisarn, Yotsapat
    Jaiyen, Saichon
    2015 7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ICITEE), 2015, : 46 - 50
  • [43] Comparing Wavelet Characterization Methods for the Classification of Upper Limb sEMG Signals
    Alfaro-Cortes, Hector Hugo
    Garcia-Manzo, Ricardo Emmanuel
    Ocampo-Estrada, Blanca Sofia
    Roman-Godinez, Israel
    Salido-Ruiz, Ricardo Antonio
    Torres-Ramos, Sulema
    COMPUTACION Y SISTEMAS, 2023, 27 (02): : 553 - 567
  • [44] sEMG Signal Enhancement using Cubical Denoising for Wrist movement Classification
    Rizvi, Baqar A.
    Farooq, Omar
    Iqbal, Sadaf
    Khan, Abid A.
    2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), 2017, : 167 - 170
  • [45] Hand and Lower Arm Movements Classification Using Deep ANN and sEMG
    Al-Maliki, Abdullah Y.
    Iqbal, Kamran
    PROCEEDINGS OF 2021 IEEE 30TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2021,
  • [46] Enhancing Classification Accuracy of Transhumeral Prosthesis: A Hybrid sEMG and fNIRS Approach
    Sattar, Neelum Yousaf
    Kausar, Zareena
    Usama, Syed Ali
    Naseer, Noman
    Farooq, Umer
    Abdullah, Ahmed
    Hussain, Syed Zahid
    Khan, Umar Shahbaz
    Khan, Haroon
    Mirtaheri, Peyman
    IEEE ACCESS, 2021, 9 : 113246 - 113257
  • [47] TOM-based blind identification of nonlinear Volterra systems
    Tan, HZ
    Aboulnasr, T
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2006, 55 (01) : 300 - 310
  • [48] Blind Identification of Polar Codes Based on Estimation and Derivation Approaches
    Yi, Chen
    Pang, Bo
    He, Lifang
    Ma, Baoze
    Li, Yong
    Lau, Francis C. M.
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (02) : 414 - 418
  • [49] Using QR Factorization in Subspace Based Blind Channel Identification
    Chen, C. Y.
    Yu, J. S.
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 3413 - 3417
  • [50] A fractionally spaced blind channel identification based on genetic algorithm
    Deng, AA
    Li, XL
    Xie, SL
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 : 1344 - 1350