Predicting Chiral Nanostructures, Lattices and Super lattices in Complex Multicomponent Nanoparticle Self-Assembly

被引:25
作者
Hur, Kahyun [1 ]
Hennig, Richard G. [1 ]
Escobedo, Fernando A. [2 ]
Wiesner, Ulrich [1 ]
机构
[1] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Self-consistent field theory; nanoparticle; block copolymer; self-assembly; hybrid materials; PHASES; SUPERLATTICES; NANOCRYSTALS; COPOLYMERS; CRYSTALS;
D O I
10.1021/nl301209c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
"Bottom up" type nanoparticle (NP) self-assembly is expected to provide facile routes to nanostructured materials for various, for example, energy related, applications. Despite progress in simulations and theories, structure prediction of self-assembled materials beyond simple model systems remains challenging. Here we utilize a field theory approach for predicting nanostructure of complex and multicomponent hybrid systems with multiple types of short- and long-range interactions. We propose design criteria for controlling a range of NP based nanomaterial structures. In good agreement with recent experiments, the theory predicts that ABC triblock terpolyrner directed assemblies with ligand-stabilized NPs can lead to chiral NP network structures. Furthermore, we predict that long-range Coulomb interactions between NPs leading to simple NP lattices, when applied to NP/block copolymer (BCP) assemblies, induce NP superlattice formation within the phase separated BCP nanostructure, a strategy not yet realized experimentally. We expect such superlattices to be of increasing interest to communities involved in research on, for example, energy generation and storage, metamaterials, as well as microelectronics and information storage.
引用
收藏
页码:3218 / 3223
页数:6
相关论文
共 33 条
[1]   Three-dimensional binary superlattices of oppositely charged colloids [J].
Bartlett, P ;
Campbell, AI .
PHYSICAL REVIEW LETTERS, 2005, 95 (12)
[2]   Discovering new ordered phases of block copolymers [J].
Bohbot-Raviv, Y ;
Wang, ZG .
PHYSICAL REVIEW LETTERS, 2000, 85 (16) :3428-3431
[3]   Monte Carlo Simulation of Coarse Grain Polymeric Systems [J].
Detcheverry, Francois A. ;
Pike, Darin Q. ;
Nealey, Paul F. ;
Mueller, Marcus ;
de Pablo, Juan J. .
PHYSICAL REVIEW LETTERS, 2009, 102 (19)
[4]   Improving the density of jammed disordered packings using ellipsoids [J].
Donev, A ;
Cisse, I ;
Sachs, D ;
Variano, E ;
Stillinger, FH ;
Connelly, R ;
Torquato, S ;
Chaikin, PM .
SCIENCE, 2004, 303 (5660) :990-993
[5]   Combinatorial screening of complex block copolymer assembly with self-consistent field theory [J].
Drolet, F ;
Fredrickson, GH .
PHYSICAL REVIEW LETTERS, 1999, 83 (21) :4317-4320
[6]   Ordered network phases in linear poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers [J].
Epps, TH ;
Cochran, EW ;
Bailey, TS ;
Waletzko, RS ;
Hardy, CM ;
Bates, FS .
MACROMOLECULES, 2004, 37 (22) :8325-8341
[7]   Field-theoretic polymer simulations [J].
Ganesan, V ;
Fredrickson, GH .
EUROPHYSICS LETTERS, 2001, 55 (06) :814-820
[8]   Stable Prenucleation Calcium Carbonate Clusters [J].
Gebauer, Denis ;
Voelkel, Antje ;
Coelfen, Helmut .
SCIENCE, 2008, 322 (5909) :1819-1822
[9]   Geometric theory of diblock copolymer phases [J].
Grason, GM ;
DiDonna, BA ;
Kamien, RD .
PHYSICAL REVIEW LETTERS, 2003, 91 (05) :583041-583044
[10]   Discovering ordered phases of block copolymers: New results from a generic Fourier-space approach [J].
Guo, Zuojun ;
Zhang, Guojie ;
Qiu, Feng ;
Zhang, Hongdong ;
Yang, Yuliang ;
Shi, An-Chang .
PHYSICAL REVIEW LETTERS, 2008, 101 (02)