Nonadiabatic quantum dynamics without potential energy surfaces

被引:13
|
作者
Albareda, Guillermo [1 ,2 ,3 ]
Kelly, Aaron [1 ,2 ,4 ]
Rubio, Angel [1 ,2 ,5 ]
机构
[1] Max Planck Inst Struct & Dynam Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
[2] Ctr Free Electron Laser Sci, Luruper Chaussee 149, D-22761 Hamburg, Germany
[3] Univ Barcelona, Inst Theoret & Computat Chem, Marti I Franques 1-11, E-08028 Barcelona, Spain
[4] Dalhousie Univ, Dept Chem, Halifax, NS B3H 4R2, Canada
[5] Flatiron Inst, Ctr Computat Quantum Phys CCQ, 162 Fifth Ave, New York, NY 10010 USA
来源
PHYSICAL REVIEW MATERIALS | 2019年 / 3卷 / 02期
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
MOLECULAR-DYNAMICS; ALGORITHM;
D O I
10.1103/PhysRevMaterials.3.023803
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an ab initio algorithm for quantum dynamics simulations that reformulates the traditional "curse of dimensionality" that plagues all state-of-the-art techniques for solving the time-dependent Schrodinger equation. Using a stochastic wave-function ansatz that is based on a set of interacting single-particle conditional wave functions, we show that the difficulty of the problem becomes dominated by the number of trajectories needed to describe the process, rather than simply the number of degrees of freedom involved. This highly parallelizable technique achieves quantitative accuracy for situations in which mean-field theory drastically fails to capture qualitative aspects of the dynamics, such as quantum decoherence or the reduced nuclear probability density, using orders of magnitude fewer trajectories than a mean-field simulation. We illustrate the performance of this method for two fundamental nonequilibrium processes: a photoexcited proton-coupled electron transfer problem, and nonequilibrium dynamics in a cavity bound electron-photon system in the ultrastrong-coupling regime.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Nonadiabatic dynamics in multidimensional complex potential energy surfaces
    Kossoski, Fabris
    Barbatti, Mario
    CHEMICAL SCIENCE, 2020, 11 (36) : 9827 - 9835
  • [2] Quantum grow-A quantum dynamics sampling approach for growing potential energy surfaces and nonadiabatic couplings
    Godsi, Oded
    Collins, Michael A.
    Peskin, Uri
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (12)
  • [3] Nonadiabatic Wave Packet Dynamics with Ab Initio Cavity-Born-Oppenheimer Potential Energy Surfaces
    Schnappinger, Thomas
    Kowalewski, Markus
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, : 460 - 471
  • [4] Efficient Frozen Gaussian Sampling algorithms for nonadiabatic quantum dynamics at metal surfaces
    Huang, Zhen
    Xu, Limin
    Zhou, Zhennan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 474
  • [5] Nonadiabatic Molecular Quantum Dynamics with Quantum Computers
    Ollitrault, Pauline J.
    Mazzola, Guglielmo
    Tavernelli, Ivano
    PHYSICAL REVIEW LETTERS, 2020, 125 (26)
  • [6] Direct grid-based quantum dynamics on propagated diabatic potential energy surfaces
    Richings, Gareth W.
    Habershon, Scott
    CHEMICAL PHYSICS LETTERS, 2017, 683 : 228 - 233
  • [7] Nonadiabatic Derivative Couplings Calculated Using Information of Potential Energy Surfaces without Wavefunctions: Ab Initio and Machine Learning Implementations
    Chen, Wen-Kai
    Wang, Sheng-Rui
    Liu, Xiang-Yang
    Fang, Wei-Hai
    Cui, Ganglong
    MOLECULES, 2023, 28 (10):
  • [8] Surface Hopping without Momentum Jumps: A Quantum-Trajectory-Based Approach to Nonadiabatic Dynamics
    Martens, Craig C.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (05) : 1110 - 1128
  • [9] PySpawn: Software for Nonadiabatic Quantum Molecular Dynamics
    Fedorov, Dmitry A.
    Seritan, Stefan
    Fales, B. Scott
    Martinez, Todd J.
    Levine, Benjamin G.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (09) : 5485 - 5498
  • [10] Non-adiabatic quantum dynamics without potential energy surfaces based on second-quantized electrons: Application within the framework of the MCTDH method
    Sasmal, Sudip
    Vendrell, Oriol
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (15)