Recent progress in photoelectrochemical water splitting for solar hydrogen production

被引:40
|
作者
Shi, Zhan
Wen, Xin
Guan, Zhongjie
Cao, Dapeng
Luo, Wenjun [1 ]
Zou, Zhigang
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Ecomat & Renewable Energy Res Ctr, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Photoelectrochemical cells; BiVO4; alpha-Fe2O3; Ta3N5; Cu2ZnSnS4; TA3N5 NANOROD ARRAYS; BISMUTH VANADATE PHOTOANODES; VISIBLE-LIGHT IRRADIATION; MO-DOPED BIVO4; HEMATITE PHOTOANODES; OXYGEN EVOLUTION; OXIDATION; EFFICIENT; LAYER; CATALYST;
D O I
10.1016/j.aop.2015.04.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A water splitting photoelectrochemical (PEC) cell can convert solar energy to hydrogen fuels directly. The challenges for practical application are to fabricate photoelectrodes with high efficiency, good durability and low cost. In this review, we focus on recent progress of some promising photoelectrode materials, including BiVO4, alpha-Fe2O3, Ta3N5 photoanodes and Cu2ZnSnS4 photocathodes. Several new strategies to enhance the performance of a PEC cell, such as surface exfoliation, suppressing back reaction and loading dual-layer catalysts, are discussed. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:236 / 247
页数:12
相关论文
共 50 条
  • [1] Hydropowered photoelectrochemical water splitting solar cell for hydrogen production
    Li, Hongxia
    Dong, Wei
    Xi, Junhua
    Li, Zhaodong
    Wu, Xin
    Ji, Zhenguo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 691 : 750 - 754
  • [2] Latest progress in hydrogen production from solar water splitting via photocatalysis, photoelectrochemical, and photovoltaic-photoelectrochemical solutions
    Li, Rengui
    CHINESE JOURNAL OF CATALYSIS, 2017, 38 (01) : 5 - 12
  • [3] Recent progress and perspectives on Sb2Se3-based photocathodes for solar hydrogen production via photoelectrochemical water splitting
    Chen, Shuo
    Liu, Tianxiang
    Zheng, Zhuanghao
    Ishaq, Muhammad
    Liang, Guangxing
    Fan, Ping
    Chen, Tao
    Tang, Jiang
    JOURNAL OF ENERGY CHEMISTRY, 2022, 67 : 508 - 523
  • [4] Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting
    Hisatomi, Takashi
    Kubota, Jun
    Domen, Kazunari
    CHEMICAL SOCIETY REVIEWS, 2014, 43 (22) : 7520 - 7535
  • [5] Recent theoretical progress in the development of photoanode materials for solar water splitting photoelectrochemical cells
    Bhatt, Mahesh Datt
    Lee, Jae Sung
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (20) : 10632 - 10659
  • [6] Photoelectrochemical cells for solar hydrogen production: Challenges and opportunities
    Chiu, Yi-Hsuan
    Lai, Ting-Hsuan
    Kuo, Ming-Yu
    Hsieh, Ping-Yen
    Hsu, Yung-Jung
    APL MATERIALS, 2019, 7 (08):
  • [7] Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting
    Tayebi, Meysam
    Lee, Byeong-Kyu
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 111 : 332 - 343
  • [8] A Review of Recent Progress on Silicon Carbide for Photoelectrochemical Water Splitting
    Jian, Jingxin
    Sun, Jianwu
    SOLAR RRL, 2020, 4 (07)
  • [9] Photoelectrochemical water splitting with engineering aspects for hydrogen production: Recent advances, strategies and challenges
    Qureshi, Fazil
    Tahir, Muhammad
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 69 : 760 - 776
  • [10] Recent strategies to enhance the efficiency of hematite photoanodes in photoelectrochemical water splitting
    Zhou, Dinghua
    Fan, Ke
    CHINESE JOURNAL OF CATALYSIS, 2021, 42 (06) : 904 - 919