Unified kinetic model of dopant segregation during vapor-phase growth

被引:23
作者
Arnold, CB [1 ]
Aziz, MJ
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Princeton Inst Sci & Technol Mat, Princeton, NJ 08544 USA
[3] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
D O I
10.1103/PhysRevB.72.195419
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop a unified kinetic model for surface segregation during vapor phase growth that concisely and quantitatively describes the observed behavior in silicon-based systems. A simple analytic function for the segregation length is derived by treating terrace-mediated and step-edge-mediated mechanisms in parallel. The predicted behavior of this parameter is examined through its temperature, flux, and terrace length dependence. Six distinct temperature regimes are predicted for the segregation length that depend on the relative segregation energies and activation barriers of the two mechanisms. The model is compared to reported behavior of Sb and P in Si(001) and excellent agreement is obtained using realistic energies and preexponential factors. The model accounts for the experimentally observed anomalous low-temperature segregation of Sb as a consequence of the competition between step-edge-mediated segregation, dominant at low temperatures, and terrace-mediated segregation, dominant at higher temperatures. The generalized treatment of segregation mechanisms in the model makes it applicable to other segregating systems, including metals and III-V semiconductors.
引用
收藏
页数:17
相关论文
共 53 条