Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm

被引:396
作者
Colless, J. I. [1 ,2 ]
Ramasesh, V. V. [1 ,2 ]
Dahlen, D. [1 ,2 ]
Blok, M. S. [1 ,2 ]
Kimchi-Schwartz, M. E. [1 ,2 ,6 ]
McClean, J. R. [3 ,5 ]
Carter, J. [3 ]
de Jong, W. A. [3 ]
Siddiqi, I. [1 ,2 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Quantum Nanoelect Lab, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Ctr Quantum Coherent Sci, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[5] Google Inc, Venice, CA 90291 USA
[6] MIT, Lincoln Lab, Lexington, MA 02421 USA
来源
PHYSICAL REVIEW X | 2018年 / 8卷 / 01期
关键词
STATE;
D O I
10.1103/PhysRevX.8.011021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Harnessing the full power of nascent quantum processors requires the efficient management of a limited number of quantum bits with finite coherent lifetimes. Hybrid algorithms, such as the variational quantum eigensolver (VQE), leverage classical resources to reduce the required number of quantum gates. Experimental demonstrations of VQE have resulted in calculation of Hamiltonian ground states, and a new theoretical approach based on a quantum subspace expansion (QSE) has outlined a procedure for determining excited states that are central to dynamical processes. We use a superconducting-qubit-based processor to apply the QSE approach to the H-2 molecule, extracting both ground and excited states without the need for auxiliary qubits or additional minimization. Further, we show that this extended protocol can mitigate the effects of incoherent errors, potentially enabling larger-scale quantum simulations without the need for complex error-correction techniques.
引用
收藏
页数:7
相关论文
共 34 条
  • [1] [Anonymous], 2013, MOL ELECT STRUCTURE
  • [2] [Anonymous], 2009, MANY BODY METHODS CH
  • [3] Hybrid Quantum-Classical Approach to Correlated Materials
    Bauer, Bela
    Wecker, Dave
    Millis, Andrew J.
    Hastings, Matthew B.
    Troyer, Matthias
    [J]. PHYSICAL REVIEW X, 2016, 6 (03):
  • [4] Berne B. J., 1998, CLASSICAL QUANTUM DY
  • [5] Experimental Quantum Computing to Solve Systems of Linear Equations
    Cai, X. -D.
    Weedbrook, C.
    Su, Z. -E.
    Chen, M. -C.
    Gu, Mile
    Zhu, M. -J.
    Li, Li
    Liu, Nai-Le
    Lu, Chao-Yang
    Pan, Jian-Wei
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (23)
  • [6] Demonstration of a small programmable quantum computer with atomic qubits
    Debnath, S.
    Linke, N. M.
    Figgatt, C.
    Landsman, K. A.
    Wright, K.
    Monroe, C.
    [J]. NATURE, 2016, 536 (7614) : 63 - +
  • [7] NMR Implementation of a Molecular Hydrogen Quantum Simulation with Adiabatic State Preparation
    Du, Jiangfeng
    Xu, Nanyang
    Peng, Xinhua
    Wang, Pengfei
    Wu, Sanfeng
    Lu, Dawei
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (03)
  • [8] Surface codes: Towards practical large-scale quantum computation
    Fowler, Austin G.
    Mariantoni, Matteo
    Martinis, John M.
    Cleland, Andrew N.
    [J]. PHYSICAL REVIEW A, 2012, 86 (03)
  • [9] Griffiths DI, 2016, Introduction to Quantum Mechanics
  • [10] SELF-CONSISTENT MOLECULAR-ORBITAL METHODS .12. FURTHER EXTENSIONS OF GAUSSIAN-TYPE BASIS SETS FOR USE IN MOLECULAR-ORBITAL STUDIES OF ORGANIC-MOLECULES
    HEHRE, WJ
    DITCHFIELD, R
    POPLE, JA
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1972, 56 (05) : 2257 - +