Cathodoluminescence spectra of gallium nitride nanorods

被引:6
作者
Tsai, Chia-Chang [1 ,2 ]
Li, Guan-Hua [1 ,2 ]
Lin, Yuan-Ting [1 ,2 ]
Chang, Ching-Wen [1 ,2 ]
Wadekar, Paritosh [1 ,2 ]
Chen, Quark Yung-Sung [1 ,2 ]
Rigutti, Lorenzo [3 ]
Tchernycheva, Maria [3 ]
Julien, Francois Henri [3 ]
Tu, Li-Wei [1 ,2 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 80424, Taiwan
[2] Natl Sun Yat Sen Univ, Ctr Nanosci & Nanotechnol, Kaohsiung 80424, Taiwan
[3] Univ Paris 11, Inst Elect Fondamentale, CNRS, UMR 8622, F-91405 Orsay, France
来源
NANOSCALE RESEARCH LETTERS | 2011年 / 6卷
关键词
gallium nitride; nanorod; cathodoluminescence; scanning electron microscopy; MOLECULAR-BEAM EPITAXY; GAN; GROWTH; TEMPERATURE; SILICON; RATIO;
D O I
10.1186/1556-276X-6-631
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Gallium nitride [GaN] nanorods grown on a Si(111) substrate at 720 degrees C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated. The CL spectra along the length of the individual GaN nanorod were also studied. The results reveal that the 3.2-eV peak comes from the structural defect at the interface between the GaN nanorod and Si substrate. The surface state emission of the single GaN nanorod is stronger as the diameter of the GaN nanorod becomes smaller due to an increased surface-to-volume ratio.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Gallium Nitride Power Devices: A State of the Art Review [J].
Udabe, Ander ;
Baraia-Etxaburu, Igor ;
Diez, David Garrido .
IEEE ACCESS, 2023, 11 :48628-48650
[42]   Ultralow wear of gallium nitride [J].
Zeng, Guosong ;
Tan, Chee-Keong ;
Tansu, Nelson ;
Krick, Brandon A. .
APPLIED PHYSICS LETTERS, 2016, 109 (05)
[43]   Synthesis, Microstructure, and Cathodoluminescence of [0001]-Oriented GaN Nanorods Grown on Conductive Graphite Substrate [J].
Yuan, Fang ;
Liu, Baodan ;
Wang, Zaien ;
Yang, Bing ;
Yin, Yao ;
Dierre, Benjamin ;
Sekiguchi, Takashi ;
Zhang, Guifeng ;
Jiang, Xin .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (22) :12066-12072
[44]   Thermodynamic properties of gallium nitride [J].
Peshek, Timothy J. ;
Angus, John C. ;
Kash, Kathleen .
JOURNAL OF CRYSTAL GROWTH, 2011, 322 (01) :114-116
[45]   Computer study of the Raman spectra and infrared optical properties of gallium nitride and gallium arsenic nanoparticles with SiO2 core and shell [J].
Galashev, Alexander Y. .
JOURNAL OF NANOPARTICLE RESEARCH, 2014, 16 (04) :1-18
[46]   A Detailed Investigation of the Growth Conditions of Gallium Nitride Nanorods by Hydride Vapor Phase Epitaxy [J].
Shin, Min Jeong ;
Kim, Min Ji ;
Jeon, Hun Soo ;
Ahn, Hyung Soo ;
Yi, Sam Nyung ;
Huh, Yoon ;
Yu, Young-Moon ;
Sawaki, Nobuhiko .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (01)
[47]   Native Gallium Adatoms Discovered on Atomically-Smooth Gallium Nitride Surfaces at Low Temperature [J].
Alam, Khan ;
Foley, Andrew ;
Smith, Arthur R. .
NANO LETTERS, 2015, 15 (03) :2079-2085
[48]   Cathodoluminescence from ZnO Single Nanorods [J].
Lee, Sucheol ;
Lee, Eunmo ;
Lee, Cheol Eui ;
Noh, Seung Jeong ;
Kim, Hee Soo .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2011, 58 (04) :894-896
[49]   High Temperature Measurement of Elastic Moduli of (0001) Gallium Nitride [J].
Hicks, M. -L. ;
Tabeart, J. ;
Edwards, M. J. ;
Le Boulbar, E. D. ;
Allsopp, D. W. E. ;
Bowen, C. R. ;
Dent, A. C. E. .
INTEGRATED FERROELECTRICS, 2012, 133 :17-24
[50]   Polarization-free integrated gallium-nitride photonics [J].
Bayram, C. ;
Liu, R. .
QUANTUM SENSING AND NANO ELECTRONICS AND PHOTONICS XIV, 2017, 10111