Cathodoluminescence spectra of gallium nitride nanorods

被引:6
作者
Tsai, Chia-Chang [1 ,2 ]
Li, Guan-Hua [1 ,2 ]
Lin, Yuan-Ting [1 ,2 ]
Chang, Ching-Wen [1 ,2 ]
Wadekar, Paritosh [1 ,2 ]
Chen, Quark Yung-Sung [1 ,2 ]
Rigutti, Lorenzo [3 ]
Tchernycheva, Maria [3 ]
Julien, Francois Henri [3 ]
Tu, Li-Wei [1 ,2 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 80424, Taiwan
[2] Natl Sun Yat Sen Univ, Ctr Nanosci & Nanotechnol, Kaohsiung 80424, Taiwan
[3] Univ Paris 11, Inst Elect Fondamentale, CNRS, UMR 8622, F-91405 Orsay, France
来源
NANOSCALE RESEARCH LETTERS | 2011年 / 6卷
关键词
gallium nitride; nanorod; cathodoluminescence; scanning electron microscopy; MOLECULAR-BEAM EPITAXY; GAN; GROWTH; TEMPERATURE; SILICON; RATIO;
D O I
10.1186/1556-276X-6-631
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Gallium nitride [GaN] nanorods grown on a Si(111) substrate at 720 degrees C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated. The CL spectra along the length of the individual GaN nanorod were also studied. The results reveal that the 3.2-eV peak comes from the structural defect at the interface between the GaN nanorod and Si substrate. The surface state emission of the single GaN nanorod is stronger as the diameter of the GaN nanorod becomes smaller due to an increased surface-to-volume ratio.
引用
收藏
页数:7
相关论文
共 50 条
[31]   Scanning electron microscopy and cathodoluminescence study of the epitaxial lateral overgrowth (ELO) process for gallium nitride [J].
M. A. L. Johnson ;
Zhonghai Yu ;
J. D. Brown ;
N. A. El-Masry ;
J. W. Cook ;
J. F. Schetzina .
Journal of Electronic Materials, 1999, 28 :295-300
[32]   Scanning electron microscopy and cathodoluminescence study of the epitaxial lateral overgrowth (ELO) process for gallium nitride [J].
Johnson, MAL ;
Yu, ZH ;
Brown, JD ;
El-Masry, NA ;
Cook, JW ;
Schetzina, JF .
JOURNAL OF ELECTRONIC MATERIALS, 1999, 28 (03) :295-300
[33]   Gallium oxide nanorods by the conversion of gallium oxide hydroxide nanorods [J].
Liu, Xiaohe ;
Qiu, Guanzhou ;
Zhao, Yan ;
Zhang, Ning ;
Yi, Ran .
JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 439 (1-2) :275-278
[34]   Synthesis of gallium nitride nano-particles by ammonia nitridation of mixed β-gallium oxide and gallium nitride powders [J].
Kiyono, Hajime ;
Matsuo, Yasuyuki ;
Mise, Takuto ;
Kobayashi, Kohei ;
Alhussain, Hanan .
JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2020, 128 (10) :665-669
[35]   Spatially-Resolved Cathodoluminescence in GaN Nanorods and in AlGaN/GaN Multiquantum Discs Having Different Quantum Confinement States [J].
Park, Young S. ;
Im, Hyunsik .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 54 (04) :1730-1733
[36]   Cathodoluminescence of GaN nanorods and nanowires grown by thermal evaporation [J].
Guzman, G. ;
Herrera, M. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2014, 29 (02)
[37]   Site control of quantum emitters in gallium nitride by polarity [J].
Nguyen, Minh Anh Phan ;
Hite, Jennifer ;
Mastro, Michael A. ;
Kianinia, Mehran ;
Toth, Milos ;
Aharonovich, Igor .
APPLIED PHYSICS LETTERS, 2021, 118 (02)
[38]   European gallium nitride capability [J].
Martin, Kevin N. .
2015 IEEE INTERNATIONAL RADAR CONFERENCE (RADARCON), 2015, :248-252
[39]   Gallium Nitride Nanomaterials and Color Centers for Quantum Technologies [J].
Castelletto, Stefania ;
Boretti, Alberto .
ACS APPLIED NANO MATERIALS, 2024, 7 (06) :5862-5877
[40]   Gallium Nitride for nuclear batteries [J].
Lu, Min ;
Wang, Guo ;
Yao, Changsheng .
MATERIALS FOR ENVIRONMENTAL PROTECTION AND ENERGY APPLICATION, PTS 1 AND 2, 2012, 343-344 :56-61