The SGNH hydrolase family: a template for carbohydrate diversity

被引:25
作者
Anderson, Alexander C. [1 ]
Stangherlin, Stefen [2 ]
Pimentel, Kyle N. [1 ]
Weadge, Joel T. [3 ]
Clarke, Anthony J. [1 ,2 ]
机构
[1] Univ Guelph, Dept Mol & Cellular Biol, Guelph, ON N1G 2W1, Canada
[2] Wilfrid Laurier Univ, Dept Chem & Biochem, Waterloo, ON N2L 3C5, Canada
[3] Wilfrid Laurier Univ, Dept Biol, Waterloo, ON N2L 3C5, Canada
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
carbohydrate acetyltransferase; carbohydrate deacetylase; carbohydrate esterase; CAZyme structure-function; CE subfamilies; PEPTIDOGLYCAN-O-ACETYLTRANSFERASE; PLATELET-ACTIVATING-FACTOR; RHAMNOGALACTURONAN ACETYL ESTERASE; PSEUDOMONAS-AERUGINOSA ALGINATE; BIOSYNTHETIC GENE-CLUSTER; CELL-WALL POLYSACCHARIDE; CRYSTAL-STRUCTURE; BACILLUS-ANTHRACIS; ESCHERICHIA-COLI; BIOCHEMICAL-CHARACTERIZATION;
D O I
10.1093/glycob/cwac045
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The substitution and de-substitution of carbohydrate materials are important steps in the biosynthesis and/or breakdown of a wide variety of biologically important polymers. The SGNH hydrolase superfamily is a group of related and well-studied proteins with a highly conserved catalytic fold and mechanism composed of 16 member families. SGNH hydrolases can be found in vertebrates, plants, fungi, bacteria, and archaea, and play a variety of important biological roles related to biomass conversion, pathogenesis, and cell signaling. The SGNH hydrolase superfamily is chiefly composed of a diverse range of carbohydrate-modifying enzymes, including but not limited to the carbohydrate esterase families 2, 3, 6, 12 and 17 under the carbohydrate-active enzyme classification system and database (CAZy.org). In this review, we summarize the structural and functional features that delineate these subfamilies of SGNH hydrolases, and which generate the wide variety of substrate preferences and enzymatic activities observed of these proteins to date.
引用
收藏
页码:826 / 848
页数:23
相关论文
共 124 条
[1]  
ALBRIGHT FR, 1973, J BIOL CHEM, V248, P3968
[2]  
Allison DG, 2003, BIOFOULING, V19, P139, DOI [10.1080/0892701031000072190, 10.1038/nrmicro2415]
[3]   Novel eukaryotic enzymes modifying cell-surface biopolymers [J].
Anantharaman, Vivek ;
Aravind, L. .
BIOLOGY DIRECT, 2010, 5
[4]   Chemical diversity in the sialic acids and related α-keto acids:: An evolutionary perspective [J].
Angata, T ;
Varki, A .
CHEMICAL REVIEWS, 2002, 102 (02) :439-469
[5]   Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that carry divergent dockerin sequences [J].
Aurilia, V ;
Martin, JC ;
McCrae, SI ;
Scott, KP ;
Rincon, MT ;
Flint, HJ .
MICROBIOLOGY-SGM, 2000, 146 :1391-1397
[6]   P. aeruginosa SGNH Hydrolase-Like Proteins AlgJ and AlgX Have Similar Topology but Separate and Distinct Roles in Alginate Acetylation [J].
Baker, Perrin ;
Ricer, Tyler ;
Moynihan, Patrick J. ;
Kitova, Elena N. ;
Walvoort, Marthe T. C. ;
Little, Dustin J. ;
Whitney, John C. ;
Dawson, Karen ;
Weadge, Joel T. ;
Robinson, Howard ;
Ohman, Dennis E. ;
Codee, Jeroen D. C. ;
Klassen, John S. ;
Clarke, Anthony J. ;
Howell, P. Lynne .
PLOS PATHOGENS, 2014, 10 (08)
[7]   Why are pathogenic staphylococci so lysozyme resistant?: The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus [J].
Bera, A ;
Herbert, S ;
Jakob, A ;
Vollmer, W ;
Götz, F .
MOLECULAR MICROBIOLOGY, 2005, 55 (03) :778-787
[8]   Involvement of TBL/DUF231 proteins into cell wall biology [J].
Bischoff, Volker ;
Selbig, Joachim ;
Scheible, Wolf-Ruediger .
PLANT SIGNALING & BEHAVIOR, 2010, 5 (08) :1057-1059
[9]   The structure at 1.6 Å resolution of the protein product of the At4g34215 gene from Arabidopsis thaliana [J].
Bitto, E ;
Bingman, CA ;
McCoy, JG ;
Allard, STM ;
Wesenberg, GE ;
Phillips, GN .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2005, 61 :1655-1661
[10]  
Blum DL, 1999, APPL ENVIRON MICROB, V65, P3990