Key Challenges for Grid-Scale Lithium-Ion Battery Energy Storage

被引:90
|
作者
Huang, Yimeng [1 ]
Li, Ju [1 ,2 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
关键词
battery recycling; fire safety; grid-scale storage; ELECTROCHEMICAL PROPERTIES; CATHODE MATERIALS; ANODE MATERIAL; POWER-PLANT; PERFORMANCE; STABILITY; SAFETY; CAPACITY; ELECTRODE; LATTICE;
D O I
10.1002/aenm.202202197
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A rapid transition in the energy infrastructure is crucial when irreversible damages are happening quickly in the next decade due to global climate change. It is believed that a practical strategy for decarbonization would be 8 h of lithium-ion battery (LIB) electrical energy storage paired with wind/solar energy generation, and using existing fossil fuels facilities as backup. To reach the hundred terawatt-hour scale LIB storage, it is argued that the key challenges are fire safety and recycling, instead of capital cost, battery cycle life, or mining/manufacturing challenges. A short overview of the ongoing innovations in these two directions is provided.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Explosion hazards study of grid-scale lithium-ion battery energy storage station
    Jin, Yang
    Zhao, Zhixing
    Miao, Shan
    Wang, Qingsong
    Sun, Lei
    Lu, Hongfei
    JOURNAL OF ENERGY STORAGE, 2021, 42
  • [2] Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems
    Chen, Tianmei
    Jin, Yi
    Lv, Hanyu
    Yang, Antao
    Liu, Meiyi
    Chen, Bing
    Xie, Ying
    Chen, Qiang
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2020, 26 (03) : 208 - 217
  • [3] Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage
    Zhang, Wenchao
    Lu, Jun
    Guo, Zaiping
    MATERIALS TODAY, 2021, 50 : 400 - 417
  • [4] Pseudo Electrochemical Impedance Spectroscopy Method for In-Situ Performance and Safety Assessment of Lithium-Ion Battery Energy Storage Systems for Grid-Scale Applications
    Sarlashkar, Jayant V.
    Surampudi, Bapiraju
    Chundru, Venkata Rajesh
    Downing, Walter D., Jr.
    2023 IEEE INTERNATIONAL SYSTEMS CONFERENCE, SYSCON, 2023,
  • [5] Grid-Scale Energy Storage Systems
    Chalamala, Babu R.
    Rosewater, David
    Preger, Yuliya
    Wittman, Reed
    Lamb, Joshua
    Kashiwakura, Akira
    IEEE ELECTRIFICATION MAGAZINE, 2021, 9 (04): : 19 - 28
  • [6] A Mediated Li-S Flow Battery for Grid-Scale Energy Storage
    Meyerson, Melissa L.
    Rosenberg, Samantha G.
    Small, Leo J.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (04) : 4202 - 4211
  • [7] Solid-state lithium-ion batteries for grid energy storage: opportunities and challenges
    Chang, Xin
    Zhao, Yu-Ming
    Yuan, Boheng
    Fan, Min
    Meng, Qinghai
    Guo, Yu-Guo
    Wan, Li-Jun
    SCIENCE CHINA-CHEMISTRY, 2024, 67 (01) : 43 - 66
  • [8] A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage
    Pasta, Mauro
    Wessells, Colin D.
    Huggins, Robert A.
    Cui, Yi
    NATURE COMMUNICATIONS, 2012, 3
  • [9] High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage
    Cho, Kyu Taek
    Ridgway, Paul
    Weber, Adam Z.
    Haussener, Sophia
    Battaglia, Vincent
    Srinivasan, Venkat
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (11) : A1806 - A1815
  • [10] Analyzing system safety in lithium-ion grid energy storage
    Rosewater, David
    Williams, Adam
    JOURNAL OF POWER SOURCES, 2015, 300 : 460 - 471