A Cascaded 3D Segmentation Model for Renal Enhanced CT Images

被引:2
作者
Li, Dan [1 ,2 ]
Chen, Zhuo [2 ]
Hassan, Haseeb [1 ,3 ]
Xie, Weiguo [2 ]
Huang, Bingding [1 ]
机构
[1] Shenzhen Technol Univ, Coll Big Data & Internet, Shenzhen, Peoples R China
[2] Wuerzburg Dynam Inc, Shenzhen, Peoples R China
[3] Shenzhen Univ, Sch Biomed Engn, Guangdong Key Lab Biomed Measurements & Ultrasoun, Hlth Sci Ctr, Shenzhen, Peoples R China
来源
KIDNEY AND KIDNEY TUMOR SEGMENTATION, KITS 2021 | 2022年 / 13168卷
关键词
Renal segmentation; Renal tumor segmentation; Renal cyst segmentation;
D O I
10.1007/978-3-030-98385-7_16
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In order to compete in the KiTS21 challenge, we propose a 3D deep learning cascaded model for the renal enhanced CT image segmentation. The proposed model comprises two stages, where stage 1 segments the kidney and stage 2 segments the tumor and cyst. The proposed deep learning network architecture is based on the residual and 3D UNet architecture. The designed network is utilized for each segmentation stage (for stage 1 and stage 2). Our intended cascaded model achieved a dice score of 0.96 for the kidney, 0.81 for the tumor, and 0.45 for the cyst on the KiTS21 validation dataset.
引用
收藏
页码:123 / 128
页数:6
相关论文
共 7 条
[1]   Recurrent residual U-Net for medical image segmentation [J].
Alom, Md Zahangir ;
Yakopcic, Chris ;
Hasan, Mahmudul ;
Taha, Tarek M. ;
Asari, Vijayan K. .
JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)
[2]   Epidemiology and risk factors for kidney cancer [J].
Chow, Wong-Ho ;
Dong, Linda M. ;
Devesa, Susan S. .
NATURE REVIEWS UROLOGY, 2010, 7 (05) :245-257
[3]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[4]  
Heller N., 2019, The KiTS19 challenge data: 300 kidney tumor cases with clinical context, CT semantic segmentations, and surgical outcomes
[5]   nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Kohl, Simon A. A. ;
Petersen, Jens ;
Maier-Hein, Klaus H. .
NATURE METHODS, 2021, 18 (02) :203-+
[6]  
Perumal S., 2018, Int. J. Pure Appl. Math, V118, P3681
[7]   ADAPTIVE HISTOGRAM EQUALIZATION AND ITS VARIATIONS [J].
PIZER, SM ;
AMBURN, EP ;
AUSTIN, JD ;
CROMARTIE, R ;
GESELOWITZ, A ;
GREER, T ;
TERHAARROMENY, B ;
ZIMMERMAN, JB ;
ZUIDERVELD, K .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1987, 39 (03) :355-368