On Chip Plasmonic Monopole Nano-Antennas and Circuits

被引:60
作者
Adato, Ronen
Yanik, Ahmet A.
Altug, Hatice [1 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
关键词
Plasmonics; nanoparticles; coupling; SEIRA; antennas; nanocircuits; ENHANCED RAMAN-SCATTERING; PROTEIN MONOLAYERS; NANOANTENNA ARRAYS; OPTICAL ANTENNAS; FANO RESONANCES; SPECTROSCOPY; GENERATION; MOLECULES; DIMERS;
D O I
10.1021/nl202528h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Analogues of many radio frequency (RF) antenna designs such as the half-wave dipole and Yagi-Uda have been successfully adapted to the optical frequency regime, opening the door for important advances in biosensing, photodetection, and emitter control. Examples of monopole antennas, however, are conspicuously rare given the element's extensive use in RF applications. Monopole antennas are attractive as they represent an easy to engineer, compact geometry and are well isolated from interference due the ground plane. Typically, however, the need to orient the antenna element perpendicular to a semi-infinite ground plane requires a three-dimensional structure and is incompatible with chip-based fabrication techniques. We propose and demonstrate here for the first time that monopole antenna elements can be fashioned out of single element nanoparticles fabricated in conventional planar geometries by using a small nanorod as a wire reflector. The structure offers a compact geometry and the reflector element provides a measure of isolation analogous to the RF counterpart. This isolation persists in the conductive coupling regime, allowing multiple monopoles to be combined into a single nanoparticle, yet still operate independently. This contrasts with several previous studies that observed dramatic variations in the spectral response of conductively coupled particles. We are able to account for these effects by modeling the system using circuit equations from standard RF antenna theory. Our model accurately describes this behavior as well as the detailed resonance tuning of the structure. As a specific practical application, the monopole resonances are precisely tuned to desired protein absorption bands, thereby enhancing their spectroscopic signatures. Furthermore, the accurate modeling of conductive coupling and demonstrated electronic isolation should be of general interest to the design of complex plasmonic circuits incorporating multiple antennas and other current carrying elements.
引用
收藏
页码:5219 / 5226
页数:8
相关论文
共 40 条
[1]   Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays [J].
Adato, Ronen ;
Yanik, Ahmet Ali ;
Wu, Chih-Hui ;
Shvets, Gennady ;
Altug, Hatice .
OPTICS EXPRESS, 2010, 18 (05) :4526-4537
[2]   Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays [J].
Adato, Ronen ;
Yanik, Ahmet A. ;
Amsden, Jason J. ;
Kaplan, David L. ;
Omenetto, Fiorenzo G. ;
Hong, Mi K. ;
Erramilli, Shyamsunder ;
Altug, Hatice .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (46) :19227-19232
[3]   Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas [J].
Alu, Andrea ;
Engheta, Nader .
PHYSICAL REVIEW LETTERS, 2008, 101 (04)
[4]   Tuning the scattering response of optical nanoantennas with nanocircuit loads [J].
Alu, Andrea ;
Engheta, Nader .
NATURE PHOTONICS, 2008, 2 (05) :307-310
[5]  
[Anonymous], 2010, CST MICR STUD
[6]  
Balanis ConstantineA., 2010, Antenna Theory, VThird
[7]   Thin Wire Shortening of Plasmonic Nanoparticle Dimers: The Reason for Red Shifts [J].
Berkovitch, Nikolai ;
Orenstein, Meir .
NANO LETTERS, 2011, 11 (05) :2079-2082
[8]   Optical Antennas [J].
Bharadwaj, Palash ;
Deutsch, Bradley ;
Novotny, Lukas .
ADVANCES IN OPTICS AND PHOTONICS, 2009, 1 (03) :438-483
[9]  
Cetin A. E, 2011, APPL PHYS LETT, V98
[10]   Optical nanorod antennas as dispersive one-dimensional Fabry-Peacuterot resonators for surface plasmons [J].
Cubukcu, Ertugrul ;
Capasso, Federico .
APPLIED PHYSICS LETTERS, 2009, 95 (20)