Real-time quantification of Staphylococcus aureus in liquid medium using infrared thermography

被引:9
作者
Salaimeh, Ahmad A. [1 ]
Campion, Jeffrey J. [2 ,3 ]
Gharaibeh, Belal Y. [1 ]
Evans, Martin E. [2 ,3 ]
Saito, Kozo [1 ]
机构
[1] Univ Kentucky, Inst Res Technol Dev IR4TD, Coll Engn, Lexington, KY 40536 USA
[2] Univ Kentucky, Coll Med, Div Infect Dis, Dept Internal Med, Lexington, KY USA
[3] Vet Affairs Med Ctr, Lexington, KY USA
关键词
Infrared thermography; Energy content; Real-time; Bacterial quantification; Staphylococcus aureus; BACTERIA; MICROORGANISMS; BIOCONVECTION;
D O I
10.1016/j.infrared.2011.11.004
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We previously showed that infrared thermography (IRT) could be used to quantify viable Escherichia colt, a representative gram-negative bacterium, in liquid growth media. Here, we evaluated the ability of IRT to enumerate a viable representative gram-positive organism, Staphylococcus aureus. We found that the energy content (EC) of the media was strongly positively correlated (r = 0.999) to measured viable counts of S. aureus ranging from 85 colony-forming units (CFU)/ml to similar to 4 x 10(8) CFU/ml. The EC of S. aureus was similar to 2-fold higher than that of E. colt at comparable cell concentrations suggesting that IRT may be used to distinguish genera. Published by Elsevier B.V.
引用
收藏
页码:170 / 172
页数:3
相关论文
共 50 条
[1]   Real-time quantification of viable bacteria in liquid medium using infrared thermography [J].
Salaimeh, Ahmad A. ;
Campion, Jeffrey J. ;
Gharaibeh, Belal Y. ;
Evans, Martin E. ;
Saito, Kozo .
INFRARED PHYSICS & TECHNOLOGY, 2011, 54 (06) :517-524
[2]   Quantification of Staphylococcus aureus which harboring sea in milk by real-time PCR [J].
Li, Y. ;
Jiang, Y. .
JOURNAL OF ANIMAL SCIENCE, 2007, 85 :488-488
[3]   Quantification of Staphylococcus aureus which harboring sea in milk by real-time PCR [J].
Li, Y. ;
Jiang, Y. .
JOURNAL OF DAIRY SCIENCE, 2007, 90 :488-488
[4]   Quantification of Staphylococcus aureus in unpasteurised bovine and caprine milk by real-time PCR [J].
Hein, I ;
Jorgensen, HJ ;
Loncarevic, S ;
Wagner, M .
RESEARCH IN MICROBIOLOGY, 2005, 156 (04) :554-563
[5]   Real-time infrared thermography for ureter detection during hysterectomy [J].
Angioli, Roberto ;
Terranova, Corrado ;
Plotti, Francesco ;
Montera, Roberto ;
Damiani, Patrizio ;
Scaletta, Giuseppe ;
Portuesi, Antonio ;
Bonanni, Antonio ;
Tombolini, Luigi ;
Novelli, Luca .
JOURNAL OF SURGICAL RESEARCH, 2012, 178 (02) :539-544
[6]   Real-time automated composite scanning using forced cooling infrared thermography [J].
Fierro, Gian Piero Malfense ;
Flora, Francesco ;
Boccaccio, Marco ;
Meo, Michele .
INFRARED PHYSICS & TECHNOLOGY, 2021, 118
[7]   Infrared Thermography for Noninvasive Real-Time Monitoring of HIFU Ablation [J].
Hsiao, Yi-Sing ;
Kumon, Ronald E. ;
Deng, Cheri X. .
11TH INTERNATIONAL SYMPOSIUM ON THERAPEUTIC ULTRASOUND, 2012, 1481 :143-148
[8]   Quantification of virulence-associated gene transcripts in epidemic methicillin resistant Staphylococcus aureus by real-time PCR [J].
Sabersheikh, SS ;
Saunders, NA .
MOLECULAR AND CELLULAR PROBES, 2004, 18 (01) :23-31
[9]   Infrared thermography method to detect cracking of nuclear fuels in real-time [J].
Pearlman, Marcus ;
Lupercio, Adrianna ;
Rektor, Attila ;
Lamb, James ;
Fleming, Austin ;
Jaques, Brian ;
Subbaraman, Harish ;
Kandandai, Nirmala .
NUCLEAR ENGINEERING AND DESIGN, 2023, 405
[10]   The Use of Infrared Thermography as a Novel Approach for Real-Time Validation of PCR Thermocyclers [J].
Gronlund, Hugo Ahlm ;
Lofstrom, Charlotta ;
Helleskov, Jens Bue ;
Hoorfar, Jeffrey .
FOOD ANALYTICAL METHODS, 2010, 3 (02) :116-119