Birefringence sensitivity to temperature of polarization maintaining photonic crystal fibers

被引:50
|
作者
Ma, Pan [1 ]
Song, Ningfang [1 ]
Jin, Jing [1 ]
Song, Jingming [1 ]
Xu, Xiaobin [1 ]
机构
[1] Beihang Univ, Sch Instrument Sci & Optoelect Engn, Beijing, Peoples R China
来源
OPTICS AND LASER TECHNOLOGY | 2012年 / 44卷 / 06期
关键词
Photonic crystal fiber (PCF); Fiber-optic gyroscopes (FOG); Birefringence;
D O I
10.1016/j.optlastec.2011.12.053
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we investigate the birefringence of polarization maintaining photonic crystal fibers (PM-PCFs) under thermal effect. Modeling and simulation of PM-PCFs under thermal effect are conducted. Birefringence in a PM-PCF as a function of the temperature is measured experimentally. The experimental results are in agreement with theoretical calculation, and show that the relative temperature dependent birefringence coefficient of the PM-PCF, d Delta n/dT/Delta n, is 2.93 x 10(-5)/degrees C, which is typically similar to 35 times less than that of conventional panda fibers. The insensitivity of polarization properties in PM-PCFs to temperature is demonstrated. These findings have important benefits in fiber optic systems and sensors, especially in fiber optic gyroscopes (FOG) where it translates into a lower polarization error and thus a higher measurement precision. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1829 / 1833
页数:5
相关论文
共 50 条
  • [41] Sagnac Interferometric Temperature Sensor Based on Boron-Doped Polarization-Maintaining Photonic Crystal Fibers
    Cheng, Lan
    Liang, Jun
    Xie, Shiwei
    Tong, Yilin
    OPTICS, 2022, 3 (04): : 400 - 408
  • [42] Birefringence Properties of Hybrid Photonic Crystal Fibers
    Cerqueira S, Arismar, Jr.
    Hernandez-Figueroa, H. E.
    Fragnito, H. L.
    2009 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE (IMOC 2009), 2009, : 794 - +
  • [43] Photonic crystal-liquid crystal fibers for single-polarization or high- birefringence guidance
    Zografopoulos, DC
    Kriezis, EE
    Tsiboukis, TD
    OPTICS EXPRESS, 2006, 14 (02) : 914 - 925
  • [44] Analysis of thermal property in hollow-core polarization maintaining photonic crystal fibers
    Wang, Chen-ge
    She, Xuan
    Chen, Kan
    Yang, Zhe
    Chen, Xing-fan
    Huang, Teng-chao
    Liu, Cheng
    OPTICAL REVIEW, 2017, 24 (03) : 291 - 296
  • [45] Distributed measurement of birefringence dispersion in polarization-maintaining fibers
    Tang, Feng
    Wang, Xiang-zhao
    Zhang, Yimo
    Jing, Wencai
    OPTICS LETTERS, 2006, 31 (23) : 3411 - 3413
  • [46] ENHANCEMENT OF BIREFRINGENCE IN POLARIZATION-MAINTAINING FIBERS BY THERMAL ANNEALING
    OURMAZD, A
    BIRCH, RD
    VARNHAM, MP
    PAYNE, DN
    TARBOX, EJ
    ELECTRONICS LETTERS, 1983, 19 (04) : 143 - 144
  • [47] Improved design of polarization-maintaining photonic crystal fibers: publisher's note
    Chen, Ming-Yang
    Zhang, Yong-Kang
    OPTICS LETTERS, 2008, 33 (23) : 2864 - 2864
  • [48] Tailoring polarization maintaining broadband residual dispersion compensating octagonal photonic crystal fibers
    Habib, Md Selim
    Habib, Md Samiul
    Hasan, Md Imran
    Razzak, S. M. Abdur
    OPTICAL ENGINEERING, 2013, 52 (11)
  • [49] Dispersion controlled and polarization maintaining photonic crystal fibers for high performance network systems
    Kawanishi, S
    Yamamoto, T
    Kubota, H
    Tanaka, M
    Yamaguchi, SI
    IEICE TRANSACTIONS ON ELECTRONICS, 2004, E87C (03): : 336 - 342
  • [50] Analysis of thermal property in hollow-core polarization maintaining photonic crystal fibers
    Chen-ge Wang
    Xuan She
    Kan Chen
    Zhe Yang
    Xing-fan Chen
    Teng-chao Huang
    Cheng Liu
    Optical Review, 2017, 24 : 291 - 296