Passage time statistics in a stochastic Verhulst model

被引:15
作者
Caceres, Manuel O. [3 ,1 ,2 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, CNEA, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[2] Univ Nacl Cuyo, Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
关键词
population dynamics; stochastic Verhulst model; first passage time;
D O I
10.1007/s10955-008-9554-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the stochastic paths perturbation approach analytic individual realizations of a stochastic Verhulst model are introduced. The escape of the unstable state is studied for any kind of noise from these individual realizations. We infer from these paths the statistics of the first passage time distribution invoking the solution of an explicit equation with a random coefficient. A stochastic population Verhulst's dynamics with small perturbations of the Wiener class is explicitly worked out. The method can also be implemented for other type of stochastic perturbations like Poisson-noise (shot white pulses), etc.
引用
收藏
页码:487 / 500
页数:14
相关论文
共 23 条
[1]  
[Anonymous], 1974, Stochastic Models in Biology
[2]   The generalized Wiener process II:: Finite systems [J].
Budini, AA ;
Cáceres, MO .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (22) :4005-4026
[3]   Functional characterization of generalized Langevin equations [J].
Budini, AA ;
Cáceres, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (23) :5959-5981
[4]   Stochastic escape processes from a non-symmetric potential normal form III:: extended explosive systems [J].
Cáceres, MO ;
Fuentes, MA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (18) :3209-3228
[5]   Stochastic escape processes from a non-symmetric potential normal form .2. The marginal case [J].
Caceres, MO ;
Fuentes, MA ;
Budde, CE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (07) :2287-2296
[6]   PASSAGE TIMES FOR THE DECAY OF A TIME-DEPENDENT UNSTABLE STATE [J].
CACERES, MO ;
BECKER, A .
PHYSICAL REVIEW A, 1990, 42 (02) :696-702
[7]   STOCHASTIC ESCAPE PROCESSES FROM A NONSYMMETRICAL POTENTIAL NORMAL-FORM [J].
CACERES, MO ;
BUDDE, CE ;
SIBONA, GJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (14) :3877-3886
[8]  
CACERES MO, 2003, ESTADISTICA EQUILIBR
[9]   ON FLUCTUATIONS AND RELAXATION IN SYSTEMS DESCRIBED BY A ONE-DIMENSIONAL FOKKER-PLANCK EQUATION WITH A TIME-DEPENDENT POTENTIAL [J].
CAROLI, B ;
CAROLI, C ;
ROULET, B ;
STJAMES, D .
PHYSICA A, 1981, 108 (01) :233-256
[10]   THEORY FOR RELAXATION AT A SUBCRITICAL PITCHFORK BIFURCATION [J].
COLET, P ;
DEPASQUALE, F ;
CACERES, MO ;
SANMIGUEL, M .
PHYSICAL REVIEW A, 1990, 41 (04) :1901-1911