Full in vivo characterization of carbonate chemistry at the site of calcification in corals

被引:93
作者
Sevilgen, Duygu S. [1 ]
Venn, Alexander A. [1 ]
Hu, Marian Y. [2 ]
Tambutte, Eric [1 ]
de Beer, Dirk [3 ]
Planas-Bielsa, Victor [4 ,5 ]
Tambutte, Sylvie [1 ]
机构
[1] Ctr Sci Monaco, Marine Biol Dept, 8 Quai Antoine 1er, MC-98000 Monaco, Monaco
[2] Christian Albrechts Univ Kiel, Hermann Rodewald Str 5, DE-24118 Kiel, Germany
[3] Max Planck Inst Marine Microbiol, Celsiusstr 1, DE-28359 Bremen, Germany
[4] Ctr Sci Monaco, Polar Biol Dept, 8 Quai Antoine 1er, MC-98000 Monaco, Monaco
[5] Unistra, CNRS, CSM, BioSensib,Lab Int Associe LIA 647, 8 Quai Antoine 1er, MC-98000 Monaco, Monaco
来源
SCIENCE ADVANCES | 2019年 / 5卷 / 01期
关键词
DISSOCIATION-CONSTANTS; INORGANIC CARBON; SEAWATER; PH; ARAGONITE; CALCIUM; WATER; ACID; PHOTOSYNTHESIS; ACIDIFICATION;
D O I
10.1126/sciadv.aau7447
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Reef-building corals form their calciumcarbonate skeletonswithin an extracellular calcifying medium(ECM). Despite the critical role of the ECM in coral calcification, ECM carbonate chemistry is poorly constrained in vivo, and full ECM carbonate chemistry has never been characterized based solely on direct in vivo measurements. Here, we measure pH(ECM) in the growing edge of Stylophora pistillata by simultaneously using microsensors and the fluorescent dye SNARF-1, showing that, when measured at the same time and place, the results agree. We then conduct microscopeguided microsensor measurements of pH, [Ca2+], and [CO32-] in the ECM and, from this, determine [DIC](ECM) and aragonite saturation state (Omega(arag)), showing that all parameters are elevatedwith respect to the surrounding seawater. Our study provides the most complete in vivo characterization of ECM carbonate chemistry parameters in a coral species to date, pointing to the key role of calcium-and carbon-concentrating mechanisms in coral calcification.
引用
收藏
页数:9
相关论文
共 54 条
  • [1] The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis
    Al-Horani, FA
    Al-Moghrabi, SM
    de Beer, D
    [J]. MARINE BIOLOGY, 2003, 142 (03) : 419 - 426
  • [2] Allemand D, 2011, CORAL REEFS: AN ECOSYSTEM IN TRANSITION, P119, DOI 10.1007/978-94-007-0114-4_9
  • [3] Allison N, 2017, HELIYON, V3, DOI 10.1016/j.heliyon.2017.e00387
  • [4] Corals concentrate dissolved inorganic carbon to facilitate calcification
    Allison, Nicola
    Cohen, Itay
    Finch, Adrian A.
    Erez, Jonathan
    Tudhope, Alexander W.
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [5] [Anonymous], 2002, WORLD ATLAS CORAL RE, DOI DOI 10.5860/CHOICE.39-2540
  • [6] [Anonymous], 2017, R LANG ENV STAT COMP
  • [7] CORAL SKELETONS - AN EXPLANATION OF THEIR GROWTH AND STRUCTURE
    BARNES, DJ
    [J]. SCIENCE, 1970, 170 (3964) : 1305 - &
  • [8] Microelectrode characterization of coral daytime interior pH and carbonate chemistry
    Cai, Wei-Jun
    Ma, Yuening
    Hopkinson, Brian M.
    Grottoli, Andrea G.
    Warner, Mark E.
    Ding, Qian
    Hu, Xinping
    Yuan, Xiangchen
    Schoepf, Verena
    Xu, Hui
    Han, Chenhua
    Melman, Todd F.
    Hoadley, Kenneth D.
    Pettay, D. Tye
    Matsui, Yohei
    Baumann, Justin H.
    Levas, Stephen
    Ying, Ye
    Wang, Yongchen
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [9] Decoupling between the response of coral calcifying fluid pH and calcification to ocean acidification
    Comeau, S.
    Cornwall, C. E.
    McCulloch, M. T.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [10] A fast-responding CO2 microelectrode for profiling sediments, microbial mats, and biofilms
    de Beer, D
    Glud, A
    Epping, E
    Kuhl, M
    [J]. LIMNOLOGY AND OCEANOGRAPHY, 1997, 42 (07) : 1590 - 1600