Optimal transport bounds between the time-marginals of a multidimensional diffusion and its Euler scheme

被引:8
作者
Alfonsi, A. [1 ]
Jourdain, B. [1 ]
Kohatsu-Higa, A. [2 ]
机构
[1] Univ Paris Est, Cerm ENPC, INRIA, F-77455 Marne La Vallee, France
[2] Ritsumeikan Univ & Japan Sci & Technol Agcy, Dept Math Sci, Kusatsu, Shiga 5258577, Japan
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2015年 / 20卷
关键词
Euler scheme; Wasserstein distance; Optimal transport; CONVERGENCE;
D O I
10.1214/EJP.v20-4195
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we prove that the time supremum of the Wasserstein distance between the time-marginals of a uniformly elliptic multidimensional diffusion with coefficients bounded together with their derivatives up to the order 2 in the spatial variables and Holder continuous with exponent gamma with respect to the time variable and its Euler scheme with N uniform time-steps is smaller than C (1 vertical bar 1(gamma) = 1 root ln(N)) N-gamma. To do so, we use the theory of optimal transport. More precisely, we investigate how to apply the theory by Ambrosio et al. [2] to compute the time derivative of the Wasserstein distance between the time-marginals. We deduce a stability inequality for the Wasserstein distance which finally leads to the desired estimation.
引用
收藏
页数:31
相关论文
共 19 条
  • [1] PATHWISE OPTIMAL TRANSPORT BOUNDS BETWEEN A ONE-DIMENSIONAL DIFFUSION AND ITS EULER SCHEME
    Alfonsi, A.
    Jourdain, B.
    Kohatsu-Higa, A.
    [J]. ANNALS OF APPLIED PROBABILITY, 2014, 24 (03) : 1049 - 1080
  • [2] Ambrosio L, 2008, LECT MATH, P1
  • [3] Uniform Convergence to Equilibrium for Granular Media
    Bolley, Francois
    Gentil, Ivan
    Guillin, Arnaud
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 208 (02) : 429 - 445
  • [4] Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations
    Bolley, Francois
    Gentil, Ivan
    Guillin, Arnaud
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (08) : 2430 - 2457
  • [5] Cannarsa P., 2004, PROGR NONLINEAR DIFF, V58
  • [6] 2ND DERIVATIVES OF CONVEX FUNCTIONS
    DUDLEY, RM
    [J]. MATHEMATICA SCANDINAVICA, 1977, 41 (01) : 159 - 174
  • [7] Faure O., THESIS ECOLE NATL PO
  • [8] LOCAL SEMICONVEXITY OF KANTOROVICH POTENTIALS ON NON-COMPACT MANIFOLDS
    Figalli, Alessio
    Gigli, Nicola
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2011, 17 (03) : 648 - 653
  • [9] Friedman A., 1975, STOCHASTIC DIFFERENT, V28
  • [10] Sharp estimates for the convergence of the density of the Euler scheme in small time
    Gobet, Emmanuel
    Labart, Celine
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 : 352 - 363