Robust Q-Learning

被引:18
|
作者
Ertefaie, Ashkan [1 ]
McKay, James R. [2 ]
Oslin, David [3 ,4 ,5 ]
Strawderman, Robert L. [1 ]
机构
[1] Univ Rochester, Dept Biostat & Computat Biol, 265 Crittenden Blvd,CU 420630, Rochester, NY 14642 USA
[2] Univ Penn, Dept Psychiat, Ctr Continuum Care Addict, Philadelphia, PA 19104 USA
[3] Univ Penn, Philadelphia Vet Adm Med Ctr, Philadelphia, PA 19104 USA
[4] Univ Penn, Treatment Res Ctr, Philadelphia, PA 19104 USA
[5] Univ Penn, Ctr Studies Addict, Dept Psychiat, Philadelphia, PA 19104 USA
关键词
Cross-fitting; Data-adaptive techniques; Dynamic treatment strategies; Residual confounding; DYNAMIC TREATMENT REGIMES; DESIGN; INFERENCE; STRATEGIES; SELECTION;
D O I
10.1080/01621459.2020.1753522
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Q-learning is a regression-based approach that is widely used to formalize the development of an optimal dynamic treatment strategy. Finite dimensional working models are typically used to estimate certain nuisance parameters, and misspecification of these working models can result in residual confounding and/or efficiency loss. We propose a robust Q-learning approach which allows estimating such nuisance parameters using data-adaptive techniques. We study the asymptotic behavior of our estimators and provide simulation studies that highlight the need for and usefulness of the proposed method in practice. We use the data from the "Extending Treatment Effectiveness of Naltrexone" multistage randomized trial to illustrate our proposed methods. Supplementary materials for this article are available online.
引用
收藏
页码:368 / 381
页数:14
相关论文
共 50 条
  • [1] Distributionally Robust Q-Learning
    Liu, Zijian
    Bai, Qinxun
    Blanchet, Jose
    Dong, Perry
    Xu, Wei
    Zhou, Zhengqing
    Zhou, Zhengyuan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [2] Deep Q-learning: A robust control approach
    Varga, Balazs
    Kulcsar, Balazs
    Chehreghani, Morteza Haghir
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (01) : 526 - 544
  • [3] Robust diagnostic classification via Q-learning
    Victor Ardulov
    Victor R. Martinez
    Krishna Somandepalli
    Shuting Zheng
    Emma Salzman
    Catherine Lord
    Somer Bishop
    Shrikanth Narayanan
    Scientific Reports, 11
  • [4] Robust diagnostic classification via Q-learning
    Ardulov, Victor
    Martinez, Victor R.
    Somandepalli, Krishna
    Zheng, Shuting
    Salzman, Emma
    Lord, Catherine
    Bishop, Somer
    Narayanan, Shrikanth
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [5] On-Off Adversarially Robust Q-Learning
    Sahoo, Prachi Pratyusha
    Vamvoudakis, Kyriakos G.
    IEEE CONTROL SYSTEMS LETTERS, 2020, 4 (03): : 749 - 754
  • [6] Split Deep Q-Learning for Robust Object Singulation
    Sarantopoulos, Iason
    Kiatos, Marios
    Doulgeri, Zoe
    Malassiotis, Sotiris
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6225 - 6231
  • [7] Q-LEARNING
    WATKINS, CJCH
    DAYAN, P
    MACHINE LEARNING, 1992, 8 (3-4) : 279 - 292
  • [8] Deep Reinforcement Learning: From Q-Learning to Deep Q-Learning
    Tan, Fuxiao
    Yan, Pengfei
    Guan, Xinping
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT IV, 2017, 10637 : 475 - 483
  • [9] Backward Q-learning: The combination of Sarsa algorithm and Q-learning
    Wang, Yin-Hao
    Li, Tzuu-Hseng S.
    Lin, Chih-Jui
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (09) : 2184 - 2193
  • [10] A Finite Sample Complexity Bound for Distributionally Robust Q-learning
    Wang, Shengbo
    Si, Nian
    Blanchet, Jose
    Zhou, Zhengyuan
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206